[1] |
钟仪华, 刘雨鑫, 林旭旭, 等. 基于马尔科夫链和贝叶斯网络的钻井风险预测[J]. 石油钻采工艺, 2016, 38(3): 5.
|
|
[ZHONG Y H, LIU Y X, LIN X X, et al. Drilling risk prediction based on Markov chain and Bayesian network[J]. Petroleum Drilling and Production Technology, 2016, 38(3): 5.
|
[2] |
YANG A X, WU M, HU J, et al. Discrimination and correction of abnormal data for condition monitoring of drilling process[J]. Neurocomputing, 2021, 433: 275-286.
|
[3] |
李根生, 宋先知, 祝兆鹏, 等. 智能钻完井技术研究进展与前景展望[J]. 石油钻探技术, 2023, 51(4): 35-47.
|
|
[LI G S, SONG X Z, ZHU Z P, et al. Research progress and prospects of intelligent drilling and completion technology[J]. Petroleum Drilling Technology, 2023, 51(4): 35-47]
|
[4] |
李根生, 宋先知, 田守嶒, 等. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术, 2020, 48(1): 1-8.
|
|
[LI G S, SONG X Z, ZHU Z P, et al. Research status and development trends of intelligent drilling technology[J] Petroleum Drilling Technology, 2020, 48(1): 1-8.]
|
[5] |
张菲菲, 崔亚辉, 于琛, 等. 基于机器学习的钻井工况识别技术现状及发展[J]. 长江大学学报: 自然科学版, 2023, 20(4): 53-65.
|
|
[ZHANG F F, CUI Y H, YU C, et al. The current status and development of drilling condition recognition technology based on machine learning[J]. Journal of Changjiang University: Natural Science Edition, 2023, 20(4): 53-65]
|
[6] |
孙挺, 赵颖, 杨进, 等. 基于支持向量机的钻井工况实时智能识别方法[J]. 石油钻探技术, 2019, 47(5): 28-33.
|
|
[SUN T, ZHAO Y, YANG J, et al. Real time intelligent recognition method for drilling conditions based on support vector machine[J]. Petroleum Drilling Technology, 2019, 47(5): 28-33.]
|
[7] |
TRIPATHI A M, RASHMI D, SUBBIAH S, et al. Oil well drilling activities recognition using a hierarchical classifier[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107883.
|
[8] |
毛光黔, 宋先知, 丁燕, 等. 基于梯度提升决策树算法的钻井工况识别方法[J]. 石油钻采工艺, 2023, 45(5): 532-539.
|
|
[MAO G Q, SONG X Z, DING Y, et al. A drilling condition recognition method based on gradient boosting decision tree algorithm[J]. Petroleum Drilling and Production Technology, 2023, 45(5): 532-539.]
|
[9] |
BEN Y X, CHRIS J, CAO D Z. Development and Application of a Real-Time Drilling State Classification Algorithm with Machine Learning[C]// SPE/AAPG/SEG Unconventional Resources Technology Conference (2019). Denver, Colorado: Society of Petroleum Engineers, 2019: 3053-3066.
|
[10] |
侯欣欣. 基于录井数据的钻井工况识别与时效分析[D]. 北京: 中国免费靠逼视频(北京), 2020.
|
|
[HOU X X. Identification and timeliness analysis of drilling conditions based on logging data[D]. Beijing: China University of Petroleum, 2020.]
|
[11] |
谯英, 林慧, 周文俊, 等. 基于CNN-BiGRU并行混合网络的钻井工况智能识别[C]// 2022年中国油气智能科技大会论文集. 北京: 中国免费靠逼视频出版社, 2022: 123-133.
|
|
[QIAO Y, LIN H, ZHOU W J, et al. Intelligent recognition of drilling conditions based on CNN BiGRU parallel hybrid network[C]//. Proceedings of the 2022 China Oil and Gas Intelligent Technology Conference. Beijing: China University of Petroleum Press, 2022: 123-133.]
|
[12] |
WANG C, LIU G H, YANG Z R, et al. Downhole working conditions analysis and drilling complications detection method based on deep learning[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103485.
|
[13] |
王海涛, 王建华, 邱晨, 等. 基于双向长短期记忆循环神经网络和条件随机场的钻井工况识别方法[J]. 石油钻采工艺, 2023, 45(5): 540-547.
|
|
[WANG H T, WANG J H, QIU C, et al. A drilling condition recognition method based on bidirectional long short-term memory recurrent neural network and conditional random field[J]. Petroleum Drilling and Production Technology, 2023, 45(5): 540-547.]
|
[14] |
YANN L, LEON B. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
[15] |
胡越, 罗东阳, 花奎, 等. 关于深度学习的综述与讨论[J]. 智能系统学报, 2019, 14(1): 19.
|
|
[HU Y, LUO D Y, HUA K, et al. A review and discussion on deep learning[J]. Journal of Intelligent Systems, 2019, 14(1): 19]
|
[16] |
WEI Z, ZHANG G G, ZHAO C C, et al. Multichannel consecutive data cross-extraction with 1DCNN-attention for diagnosis of power transformer[J]. International Journal of Electrical Power & Energy Systems, 2024, 158: 109951.
|
[17] |
DAVID O, TEMIDAYO O O, EMMANUEL G D. Consumer complaints of consumer financial protection bureau via two-stage residual one-dimensional convolutional neural network (TSR1DCNN)[J]. Data and Information Management, 2023, 7(4): 100046.
|
[18] |
CHO K, DZMITRY B, BOUGARES F, et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics, 2014: 1724-1734.
|
[19] |
WANG J T, WEN X T, HE Y L, et al. Logging curve prediction based on a CNN-GRU neural network[J]. Geophysical Prospecting for Petroleum, 2022. 61(2): 276-285.
doi: 10.3969/j.issn.1000-1441.2022.02.009
|
[20] |
ASHISH V, NOAM S, NIKI P, et al. Attention is all you need[C]//Advances In Neural Information Processing Systems 30: Annual Conference On Neural Information Processing Systems 2017, CA, USA.
|
[21] |
HU Z F, CHEN L B J, LOU Y, et al. EEG-Based Emotion Recognition Using Convolutional Recurrent Neural Network with Multi-Head Self-Attention[J]. Applied Sciences, 2022, 12(21): 11255.
|
[22] |
LIAN Z, LIU B, TAO J H. CTNet: Conversational Transformer Network for Emotion Recognition. IEEE/ACM Trans. Audio, Speech and Lang. IEEE/ACM Transactions on Audio, Speech, and Language Processing[J], 2021. 29: 985-1000.
|
[23] |
LIU T Y, ZOU B H, HE M M, et al. LncReader: identification of dual functional long noncoding RNAs using a multi-head self-attention mechanism[J]. Briefings in Bioinformatics, 2023, 24(1): 579.
|
[24] |
朱张莉, 饶元, 吴渊, 等. 注意力机制在深度学习中的研究进展[J]. 中文信息学报, 2019, 33(6): 1-11.
|
|
[ZHU Z L, RAO Y, WU Y, et al. Research progress on attention mechanisms in deep learning[J]. Chinese Journal of Information Science, 2019, 33(6): 1-11]
|
[25] |
刘建伟, 刘俊文, 罗雄麟, 等. 深度学习中注意力机制研究进展[J]. 工程科学学报, 2021, 43(11): 1499-1511.
|
|
[LIU J W, LIU J W, LUO X L, et al. Research progress on attention mechanisms in deep learning[J]. Journal of Engineering Science, 2021, 43 (11): 1499-1511]
|
[26] |
ALAA A H, RAFID S, RAAID A, et al. Oil spill detection based on machine learning and deep learning: A review[C]//In 2022 5th International Conference on Engineering Technology and its Applications (IICETA). 2022.
|
[27] |
肖立志. 机器学习数据驱动与机理模型融合及可解释性问题[J]. 石油物探, 2022, 61(2): 205-212.
doi: 10.3969/j.issn.1000-1441.2022.02.002
|
|
[XIAO L Z. Machine learning data-driven and mechanistic model fusion and interpretability issues[J]. Petroleum Geophysical Exploration, 2022, 61(2): 205-212]
|
[28] |
CHEN Y T, ZHANG D X. Physics-constrained deep learning of geomechanical logs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020. 58(8): 5932-5943.
|
[29] |
DU M G, CHEN Y T, ZHANG D X, et al. AutoKE: An automatic knowledge embedding framework for scientific machine learning[J]. IEEE Transactions on Artificial Intelligence, 2023, 4(6): 1564-1578.
|
[30] |
BIRD J J, CHLOE M, MANSO L, et al. Fruit quality and defect image classification with conditional GAN data augmentation[J]. Scientia Horticulturae, 2022, 293: 110684.
|
[31] |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 38-39.
|
|
[ZHOU Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016: 38-39.]
|