Indexed by CSTPCD
Scopus

Petroleum Science Bulletin ›› 2025, Vol. 10 ›› Issue (5): 926-940. doi: 10.3969/j.issn.2096-1693.2025.03.010

Previous Articles     Next Articles

Intelligent recognition method for drilling conditions based on 1dCNN-BiGRU and attention mechanism

WANG Zheng1(), SONG Xianzhi1,2,*(), LI Hongsong3, YU Jiawei1, WANG Yifan1, ZHANG Chongyuan4   

  1. 1 College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China
    2 State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 102249, China
    3 Kunlun Digital Intelligence Technology Co., Ltd., Beijing 102206, China
    4 Tarim Oilfield Branch of China National Petroleum Corporation, Korla 841000, China
  • Received:2024-10-10 Revised:2025-02-02 Online:2025-10-15 Published:2025-10-21
  • Contact: SONG Xianzhi E-mail:m13718613465@163.com;songxz@dgqinyehang.com

基于1dCNN-BiGRU和注意力机制的钻井工况智能识别方法

王正1(), 宋先知1,2,*(), 李洪松3, 于佳伟1, 王一帆1, 张重愿4   

  1. 1 中国免费靠逼视频(北京)石油工程学院,北京 102249
    2 中国免费靠逼视频(北京)油气资源与工程全国重点实验室,北京 102249
    3 昆仑数智科技有限责任公司,北京 102206
    4 中国石油天然气股份有限公司塔里木油田分公司,库尔勒 841000
  • 通讯作者: 宋先知 E-mail:m13718613465@163.com;songxz@dgqinyehang.com
  • 作者简介:王正(1995年—),男,博士研究生,主要从事智能钻井、智能固井方面研究,m13718613465@163.com
  • 基金资助:
    国家自然科学基金委员会国家自然科学基金-国家杰出青年科学基金(52125401)

Abstract:

This study addresses the challenges of poor real-time performance and low accuracy in drilling condition identification by introducing an innovative intelligent recognition method. The proposed approach integrates a one-dimensional convolutional neural network (1dCNN) for local feature extraction, a bidirectional gated recurrent unit (BiGRU) to capture sequential dependencies, and a multi-head attention mechanism to emphasize critical information. This fusion enables efficient discrimination among 13 drilling conditions, including rotary drilling, slide drilling, whipstocking, and reverse whipstocking. In the model design phase, comprehensive ablation studies were conducted to evaluate the contributions of each module—1dCNN, BiGRU, self-attention, and multi-head attention—as well as their serial and parallel configurations. The performance was further optimized using the Optuna framework for automatic hyperparameter tuning. Experimental results demonstrated that the model achieved an accuracy of 96.22% on time-domain data from a single well. Additionally, in both intra- and inter-block transfer tests, the overall accuracy ranged from 94% to 97%, with each drilling condition exceeding an 80% recognition rate. Real-time testing on field data also showed a high degree of consistency with actual operational conditions. Overall, the proposed method provides a robust technical framework for real-time monitoring and optimization of drilling operations.

Key words: drilling, drilling conditions, artificial intelligence, neural networks, self-attention

摘要:

本研究针对钻井工况识别中实时性差、准确率低的问题,提出了一种创新的智能识别方法。该方法融合一维卷积神经网络(1dCNN)用于局部特征提取、双向门控循环单元(BiGRU)捕捉时序依赖以及多头注意力机制对齐时间域并强化关键信息,从而实现对旋转钻进、滑动钻进、划眼、倒划眼等13种工况的高效区分。在模型设计上,通过消融实验系统评估了各模块(1dCNN、BiGRU、自注意力与多头注意力机制)及其串并联结构的贡献,并借助Optuna自动调参进一步优化了性能。实验结果表明:在单井时间域数据测试中,工况识别准确率达96.22%;在同区块及跨区块井数据迁移测试中,整体准确率保持在94%~97%,且各工况识别率均超过80%;此外,实时数据测试结果与现场实际操作高度吻合。该方法为钻井工况的实时监控与作业优化提供了有力技术支撑。

关键词: 油气钻井, 钻井工况, 人工智能, 神经网络, 注意力机制

CLC Number: