[1] |
CITARISTI I Q. International energy agency—IEA[M]// Europa Group. The Europa directory of international organizations. London: Routledge, 2022: 701-702.
|
[2] |
贾承造. 中国石油工业上游前景与未来理论技术五大挑战[J]. 石油学报, 2024, 45(1): 1-14.
doi: 10.7623/syxb202401001
|
|
[JIA C Z. Prospects and five future theoretical and technical challenges of the upstream petroleum industry in China[J]. Acta Petrolei Sinica, 2024, 45(1): 1-14.]
doi: 10.7623/syxb202401001
|
[3] |
GONZÁLEZ-TORRES M, PÉREZ-LOMBARD L, CORONEL J F, et al. A review on buildings energy information: Trends, end-uses, fuels and drivers[J]. Energy Reports, 2022, 8: 626-637.
|
[4] |
何希鹏, 张培先, 高玉巧, 等. 中国非常规油气资源效益开发面临的挑战与对策[J]. 中国石油勘探, 2025, 30(1): 26-41.
doi: 10.3969/j.issn.1672-7703.2025.01.003
|
|
[HE X P, ZHANG P X, GAO Y Q, et al. Challenges and countermeasures for beneficial development of unconventional oil and gas resources in China[J]. China Petroleum Exploration, 2025, 30(1): 26-41.]
doi: 10.3969/j.issn.1672-7703.2025.01.003
|
[5] |
付金华, 王龙, 陈修, 等. 鄂尔多斯盆地长7页岩油勘探开发新进展及前景展望[J]. 中国石油勘探, 2023, 28(5): 1-14.
doi: 10.3969/j.issn.1672-7703.2023.05.001
|
|
[FU J H, W L, CHEN X, et al. Progress and prospects of shale oil exploration and development in the seventh member of Yanchang Formation in Ordos Basin[J]. China Petroleum Exploration, 2023, 28(5): 1-14.]
doi: 10.3969/j.issn.1672-7703.2023.05.001
|
[6] |
李国欣, 朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探, 2020, 25(2): 1-13.
doi: 10.3969/j.issn.1672-7703.2020.02.001
|
|
[LI G X, ZHU R K. Progress, challenges and key issues in the unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2): 1-13.]
doi: 10.3969/j.issn.1672-7703.2020.02.001
|
[7] |
李宁, 冯周, 武宏亮, 等. 中国陆相页岩油测井评价技术方法新进展[J]. 石油学报, 2023, 44(1): 28-44.
doi: 10.7623/syxb202301003
|
|
[LI N, FENG Z, WU H L, et al. New advances in methods and technologies for well logging evaluation of continental shale oil in China[J]. Acta Petrolei Sinica, 2023, 44(1): 28-44.]
doi: 10.7623/syxb202301003
|
[8] |
赖锦, 宋翔羽, 杨薰, 等. 致密砂岩气储层测井综合评价技术研究进展[J]. 石油学报, 2025, 46(1): 220-235.
doi: 10.7623/syxb202501015
|
|
[LAI J, SONG X Y, YANG X, et al. Research progresses of comprehensive well logging evaluation methods of tight gas sandstone reservoirs[J]. Acta Petrolei Sinica, 2025, 46(1): 220-235.]
doi: 10.7623/syxb202501015
|
[9] |
石玉江, 何羽飞, 万金彬, 等. 深层煤岩气地质品质及含气量测井评价方法研究[J]. 中国石油勘探, 2024, 29(4): 128-145.
doi: 10.3969/j.issn.1672-7703.2024.04.010
|
|
[SHI Y J, HE Y F, WAN J B, et al. Research on logging evaluation methods for geological quality and gas content of deep coal measure gas[J]. China Petroleum Exploration, 2024, 29(4): 128-145.]
|
[10] |
陈秀娟, 冯镇涛, 曾芙蓉, 等. 页岩地层测井岩性识别技术发展现状[J]. 新疆石油地质, 2024, 45(6): 742-752.
|
|
[CHEN X J, FENG Z T, ZENG F R, et al. Development status of logging-based lithology identification technology for shale formations[J]. Xinjiang Petroleum Geology, 2024, 45(6): 742-752.]
|
[11] |
李宁, 徐彬森, 武宏亮, 等. 人工智能在测井地层评价中的应用现状及前景[J]. 石油学报, 2021, 42(4): 508-522.
doi: 10.7623/syxb202104008
|
|
[LI N, XU B S, WU H L, et al. Application status and prospects of artificial intelligence in well logging and formation evaluation[J]. Acta Petrolei Sinica, 2021, 42(4): 508-522.]
doi: 10.7623/syxb202104008
|
[12] |
邓少贵, 张凤姣, 陈前, 等. 基于混合机器学习算法的页岩薄互层识别方法[J]. 石油学报, 2023, 44(7): 1097-1104.
doi: 10.7623/syxb202307006
|
|
[DENG S G, ZHANG F J, CHEN Q, et al. Identification of shale thin interbeds based on hybrid machine learning algorithm[J]. Acta Petrolei Sinica, 2023, 44(7): 1097-1104.]
doi: 10.7623/syxb202307006
|
[13] |
ZHU L, ZHOU X, LIU W, et al. Total organic carbon content logging prediction based on machine learning: A brief review[J]. Energy Geoscience, 2023, 4(2): 100-107.
|
[14] |
郭锐, 林鹤, 张宇生, 等. 人工智能和神经网络技术在页岩气甜点多属性分析中的应用[C]. CPS/SEG北京2018国际地球物理会议暨展览, 北京, 2018.
|
|
[GUO R, LIN H, ZHANG Y S, et al. Application of artificial intelligence and neural network techniques to multi-attribute analysis of shale gas sweet spots[C]. Proceedings of the 2018 CPS/SEG Beijing International Geophysical Conference & Exposition, Beijing, 2018.]
|
[15] |
CHEN F Y, SUN L H, JIANG B Y, et al. A review of AI applications in unconventional oil and gas exploration and development[J]. Energies, 2025, 18(2): 391.
|
[16] |
匡立春, 刘合, 任义丽, 等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发, 2021, 48(1): 1-11.
doi: 10.11698/PED.2021.01.01
|
|
[KUANG L C, LIU H, REN Y L, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1): 1-11.]
doi: 10.1016/S1876-3804(21)60001-0
|
[17] |
PRAJAPATI R, MUKHERJEE B, SINGH U K, et al. Machine learning assisted lithology prediction using geophysical logs: A case study from Cambay Basin[J]. Journal of Earth System Science, 2024, 133(2): 108-112.
|
[18] |
SHI S, DING W, ZHAO Z, et al. Application and comparison of RBF and BP neural networks for lithology identification of Permian volcanic rocks in the Shunbei area of the Tarim Basin in China[J]. Journal of Earth System Science, 2024, 133(4): 181-186.
|
[19] |
KUMAR T, SEELAM N K, RAO G S. Lithology prediction from well log data using machine learning techniques: A case study from Talcher coalfield, eastern India[J]. Journal of Applied Geophysics, 2022, 199-214.
|
[20] |
SHUVO M A I, JOY S M H. A data driven approach to assess the petrophysical parametric sensitivity for lithology identification based on ensemble learning[J]. Journal of Applied Geophysics, 2024, 222: 105330.
|
[21] |
FARHADI S, TATULLO S, KONARI M B, et al. Evaluating StackingC and ensemble models for enhanced lithological classification in geological mapping[J]. Journal of Geochemical Exploration, 2024, 260: 107441.
|
[22] |
谷宇峰, 张道勇, 鲍志东, 等. 利用梯度提升决策树 (GBDT) 预测渗透率——以姬塬油田西部长4+5段致密砂岩储层为例[J]. 地球物理学进展, 2021, 36(2): 585-594.
|
|
[GU Y F, ZHANG D Y, BAO Z D, et al. Permeability prediction using Gradient Boosting Decision Tree(GBDT): A case study of tight sandstone reservoirs of member of Chang 4+5 in western Jiyuan Oilfield[J]. Progress in Geophysics, 2021, 36(2): 585-594.]
|
[23] |
马陇飞, 萧汉敏, 陶敬伟, 等. 基于梯度提升决策树算法的岩性智能分类方法[J]. 油气地质与采收率, 2022, 29(1): 21-29.
|
|
[MA L F, XIAO H M, TAO J W, et al. Intelligent lithology classification method based on GBDT algorithm[J]. Petroleum Geology & Recovery Efficiency, 2022, 29(1): 21-29.]
|
[24] |
闫佳飞, 李胜利, 魏泽德, 等. 基于XGBoost算法的页岩岩相测井预测方法[J]. 古地理学报, 2025, 27(3): 736-776.
|
|
[YAN J F, LI S L, WEI Z D, et al. Shale lithofacies prediction method with well-logging data based on XGBoost algorithm[J]. Journal of Palaeogeography, 2025, 27(3): 736-776.]
|
[25] |
王光宇, 宋建国, 徐飞, 等. 不平衡样本集随机森林岩性预测方法[J]. 石油地球物理勘探, 2021, 56(4): 679-687.
|
|
[WANG G Y, SONG J G, XU F, et al. Lithology prediction using random forest with imbalanced datasets[J]. Oil Geophysical Prospecting, 2021, 56(4): 679-687.]
|
[26] |
CARPENTER N E, DICKSON M E, WALKDEN M, et al. Lithological controls on soft cliff planshape evolution under high and low sediment availability[J]. Earth Surface Processes and Landforms, 2015, 40(6): 840-852.
|
[27] |
刘善伟, 马志伟, 魏世清, 等. 基于轻量级卷积神经网络的岩石图像岩性识别方法[J/OL]. 地质科技通报, 1-13[2025-06-18]. http://doi.org/10.19509/j.cnki.dzkq.tb20240348.
URL
|
|
[LIU S W, MA Z W, WEI S Q, et al. Lithology identification from rock images using a lightweight convolutional neural network[J/OL]. Bulletin of Geological Science and Technology, 1-13[2025-06-18]. http://doi.org/10.19509/j.cnki.dzkq.tb20240348.]
URL
|
[28] |
ALZUBAIDI F, MOSTAGHIMI P, SWIETOJANSKI P, et al. Automated lithology classification from drill core images using convolutional neural networks[J]. Journal of Petroleum Science and Engineering, 2021, 197: 107933.
|
[29] |
ZHANG Z, TANG J, FAN B, et al. An intelligent lithology recognition system for continental shale by using digital coring images and convolutional neural networks[J]. Geoenergy Science and Engineering, 2024, 239: 212909.
|
[30] |
ASHRAF U, ZHANG H, ANEES A, et al. A core logging, machine learning and geostatistical modeling interactive approach for subsurface imaging of lenticular geobodies in a clastic depositional system, SE Pakistan[J]. Natural Resources Research, 2021, 30(3): 1-24.
|
[31] |
LI Z, KANG Y, FENG D, et al. Semi-supervised learning for lithology identification using Laplacian support vector machine[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107510.
|
[32] |
CHANG J, LI J, KANG Y, et al. Unsupervised domain adaptation using maximum mean discrepancy optimization for lithology identification[J]. Geophysics, 2021, 86(2): 19-30.
|
[33] |
REN Q, ZHANG H, ZHANG D, et al. A framework of active learning and semi-supervised learning for lithology identification based on improved naive Bayes[J]. Expert Systems with Applications, 2022, 202: 117278.
|
[34] |
SINGH H, SEO Y, MYSHAKIN E M. Automated well-log processing and lithology classification by identifying optimal features through unsupervised and supervised machine-learning algorithms[J]. SPE Journal, 2020, 25(5): 2778-2800.
|
[35] |
赖锦, 李红斌, 张梅, 等. 非常规油气时代测井地质学研究进展[J]. 古地理学报, 2023, 25(5): 1118-1138.
doi: 10.7605/gdlxb.2023.05.057
|
|
[LAI J, LI H B, ZHANG M, et al. Advances in well logging geology in the era of unconventional hydrocarbon resources[J]. Journal of Palaeogeography, 2023, 25(5): 1118-1138.]
doi: 10.7605/gdlxb.2023.05.057
|
[36] |
VEGA-ORTIZ C, PALASH P, EDELMAN E. Analysis of machine learning models for prediction of petrophysical data[C]. 58th U.S. Rock Mechanics/Geomechanics Symposium, Golden, Colorado, USA, June 2024.
|
[37] |
SUN J, DANG W, WANG F. Prediction of TOC content in organic-rich shale using machine learning algorithms: Comparative study of random forest, support vector machine, and XGBoost[J]. Energies, 2023, 16: 4159.
|
[38] |
黄开兴, 刘卫华, 吴朝容, 等. 基于布谷鸟—BP神经网络的页岩脆性指数预测研究[J]. 中国石油勘探, 2024, 29(2): 158-166.
doi: 10.3969/j.issn.1672-7703.2024.02.013
|
|
[HUANG K X, LIU W H, WU C R. Prediction of shale brittleness index based on cuckoo-BP neural network[J]. China Petroleum Exploration, 2024, 29(2): 158-166.]
doi: 10.3969/j.issn.1672-7703.2024.02.013
|
[39] |
钱玉贵. 机器深度学习技术在致密砂岩储层预测中的应用——以川西坳陷新场须家河组为例[J]. 油气藏评价与开发, 2023, 13(5): 600-607.
|
|
[QIAN Y G. Application of machine deep learning technology in tight sandstones reservoir prediction: A case study of Xujiahe Formation in Xinchang, western Sichuan Depression[J]. Reservoir Evaluation and Development, 2023, 13(5): 600-607.]
|
[40] |
李庆, 龙训荣, 吴秀慧, 等. 基于SAO-LightGBM算法的致密砂岩储层孔隙度预测方法[J]. 天然气技术与经济, 2024, 18(4): 9-14+86.
doi: 10.3969/j.issn.2095-1132.2024.04.002
|
|
[LI Q, LONG X R, WU X H, et al. One method to predict porosity in tight sandstone reservoirs based on SAO-LightBGM algorithm[J]. Natural Gas Technology and Economy, 2024, 18(4): 9-14+86.]
|
[41] |
陈怡. 基于集成学习的储层物性参数预测方法研究[D]. 大庆: 东北免费靠逼视频, 2023.
|
|
[CHEN Y. Study on reservoir physical property parameter prediction methods based on ensemble learning[D]. Daqing: Northeast Petroleum University, 2023.]
|
[42] |
王宵宇, 廖广志, 黄文松, 等. 基于机器学习的页岩总有机碳含量评价方法[J]. 石油科学通报, 2025, 10(2): 392-403.
|
|
[WANG X Y, LIAO G Z, HUANG W S, et al. Evaluation method of total organic carbon content in shale based on machine learning[J]. Petroleum Science Bulletin, 2025, 10(2): 392-403.]
|
[43] |
WU Y, JIANG F, HU T, et al. Shale oil content evaluation and sweet spot prediction based on convolutional neural network[J]. Marine and Petroleum Geology, 2024, 167: 106997.
|
[44] |
TIAN Y, WANG G, LI H, et al. A novel deep learning method based on 2-D CNNs and GRUs for permeability prediction of tight sandstone[J]. Geoenergy Science and Engineering, 2024, 238: 212851.
|
[45] |
李贺男, 段中钰, 郑桂娟, 等. 基于CNN-LSTM-VAE混合模型的储层参数预测方法[J]. 地球物理学进展, 2022, 37(5): 1969-1976.
|
|
[LI H N, DUAN Z Y, ZHENG G J, et al. Reservoir parameter prediction method based on CNN-LSTM-VAE hybrid model[J]. Progress in Geophysics, 2022, 37(5): 1969-1976.]
|
[46] |
王冉. 基于深度学习的储层参数预测系统研究[D]. 大庆: 东北免费靠逼视频, 2023.
|
|
[WANG R. Research on reservoir parameter prediction system based on deep learning[D]. Daqing: Northeast Petroleum University, 2023.]
|
[47] |
刘涛, 张丽丽. 基于Transformer的测井储层参数预测方法研究[C]. 2024油气田勘探与开发国际会议, 西安, 2024.
|
|
[LIU T, ZHANG L L. Research on the prediction method of well logging reservoir parameters based on Transformer[C]. 2024 International Field Exploration and Development Conference in Xi’an, China, 2024.]
|
[48] |
WANG X, JIANG T, ZHOU M, et al. Application of neighborhood information-enhanced MLSTM in reservoir parameter prediction: A case study of heterogeneous carbonate reservoirs[J]. Progress in Geophysics, 2024, 39(2): 620-633.
|
[49] |
LI L, MIAO J, WEN L, et al. Intelligent prediction method of unconventional reservoir permeability based on MF-MLSTM[C]. International Conference on Computational & Experimental Engineering and Sciences. Cham: Springer Nature Switzerland, 2024.
|
[50] |
武娟, 罗仁泽, 雷璨如, 等. 基于大语言模型的致密砂岩储层测井含水饱和度预测[J]. Natural Gas Industry, 2024, 44(9): 77-87.
|
|
[WU J, LUO R Z, LEI C R, et al. Prediction of water saturation in tight sandstone reservoirs from well log data based on the large language models(LLMs)[J]. Natural Gas Industry, 2024, 44(9): 77-87.]
|
[51] |
孙正心, 金衍, 孟翰, 等. 基于深度学习数据融合的测井数据精细表征[J]. 石油科学通报, 2025, 10(1): 75-86.
|
|
[SUN Z X, JIN Y, MENG H, et al. Fine characterization of logging data based on the deep learning data fusion[J]. Petroleum Science Bulletin, 2025, 10(1): 75-86.]
|
[52] |
QIAO L, YANG S, HU Q, et al. Unsupervised contrastive learning: Shale porosity prediction based on conventional well logging[J]. Physics of fluids, 2024, 36(5): 057104.
|
[53] |
WANG H, LU S, QIAO L, et al. Unsupervised contrastive learning for few-shot TOC prediction and application[J]. International Journal of Coal Geology, 2022, 259: 104046.
|
[54] |
ZHU L, ZHANG C, ZHANG C, et al. A new and reliable dual model-and data-driven TOC prediction concept: A TOC logging evaluation method using multiple overlap methods integrated with semi-supervised deep learning[J]. Journal of Petroleum Science and Engineering, 2020, 188: 106944.
|
[55] |
李娟, 王胜建, 田玉昆, 等. 基于多源数据统计分析的页岩脆性定量评价方法——以鄂西地区牛蹄塘组页岩为例[J]. 中国地质, 2025, 52(2): 680-690.
|
|
[LI J, WANG S J, TIAN Y K, et al. Quantitative evaluation of shale brittleness based on statistics: Taking shale of Niutitang Formation in western Hubei as an example[J]. Geology in China: 2025, 52(2): 680-690.]
|
[56] |
ZHANG H, WU W. Shale content prediction of well logs based on CNN-BiGRU-VAE neural network[J]. Journal of Earth System Science, 2023, 132(3): 156-169.
|
[57] |
WANG C Z, WEI X Y, PAN H X, et al. Well logging stratigraphic correlation algorithm based on semantic segmentation[J]. Applied Geophysics, 2024, 21(4): 650-666.
|
[58] |
夏宏泉, 赖俊, 李高仁, 等. 基于测井资料的页岩油储层甜点预测[J]. 西南免费靠逼视频学报(自然科学版), 2021, 43(4): 199-207.
doi: 10.11885/j.issn.16745086.2021.04.28.10
|
|
[XIA H Q, LAI J, LI G R, et al. Sweet Spot prediction of shale oil reservoir based on logging data[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(4): 199-207.]
|
[59] |
杨智, 侯连华, 陶士振, 等. 致密油与页岩油形成条件与“甜点区”评价[J]. 石油勘探与开发, 2015, 42(5): 555-565.
|
|
[YANG Z, HOU L H, TAO S Z, et al. Formation conditions and “sweet spot” evaluation of tight oil and shale oil[J]. Petroleum Exploration and Development, 2015, 42(5): 555-565.]
|
[60] |
蔡勋育, 邱桂强, 孙冬胜, 等. 中国中西部大型盆地致密砂岩油气“甜点”类型与特征[J]. 石油与天然气地质, 2020, 41(4): 684-695.
|
|
[CAI X Y, QIU G Q, SUN D S, et al. Types and characteristics of tight sandstone sweet spots in large basins of central-western China[J]. Oil & Gas Geology, 2020, 41(4): 684-695.]
|
[61] |
姚东华, 周立宏, 王文革, 等. 页岩油综合甜点测井评价——以沧东凹陷孔店组二段为例[J]. 石油学报, 2022, 43(7): 912-924.
doi: 10.7623/syxb202207003
|
|
[YAO D H, ZHOU L H, WANG W G, et al. Logging evaluation of composite sweet spots for shale oil: A case study of Member 2 of Kongdian Formation in Cangdong sag[J]. Acta Petrolei Sinica, 2022, 43(7): 912-924.]
doi: 10.7623/syxb202207003
|
[62] |
聂云丽, 高国忠. 基于随机森林的页岩气“甜点”分类方法[J]. 油气藏评价与开发, 2023, 13(3): 358-367.
|
|
[NIE Y L, GAO G Z. Classification of shale gas “sweet spot” based on Random Forest machine learning[J]. Reservoir Evaluation and Development, 2023, 13(3): 358-367.]
|
[63] |
刘国强. 非常规油气勘探测井评价技术的挑战与对策[J]. 石油勘探与开发, 2021, 48(5): 891-902.
doi: 10.11698/PED.2021.05.02
|
|
[LIU G Q. Challenges and countermeasures of log evaluation in unconventional petroleum exploration[J]. Petroleum Exploration and Development, 2021, 48(5): 891-902.]
|
[64] |
CHEN K, ZHAO M, FENG Y, et al. Intelligent recognition of “geological-engineering” sweet spots in tight sandstone reservoirs: An application to a tight gas reservoir in Ordos Basin, China[J/OL]. Frontiers in Earth Science, 2025. DOI: 10.3389/feart.2025.1535883.
|
[65] |
张建国, 钟骑, 王风华, 等. 天文旋回理论在页岩油气储层沉积演化及甜点预测中的应用[J]. 石油学报, 2024, 45(10): 1507-1521+1551.
doi: 10.7623/syxb202410005
|
|
[ZHANG J G, ZHONG Q, WANG F H, et al. Application of astronomical cycle theory to sedimentary evolution and sweet spot prediction of shale oil-gas reservoir[J]. Acta Petrolei Sinica, 2024, 45(10): 1507-1521+1551.]
doi: 10.7623/syxb202410005
|
[66] |
HUO F, CHEN Y, REN W, et al. Prediction of reservoir key parameters in “sweet spot” on the basis of particle swarm optimization to TCN-LSTM network[J]. Journal of Petroleum Science and Engineering, 2022, 214: 110544.
|
[67] |
NIE Y, XIAN C, LUO J, et al. Bagging machine learning algorithms for rapid identification, classification, evaluation and upscaling in unconventional reservoir[J]. Geoenergy Science and Engineering, 2025, 246: 213545.
|
[68] |
杨琨, 罗山贵, 花凌旭, 等. 致密砾岩油藏压裂甜点预测研究——以玛18井区为例[J]. 科学技术与工程, 2022, 22(32): 14174-14183.
|
|
[YANG K, LUO S G, HUA L X, et al. Investigation on the fracturing sweet spot prediction of conglomerate tight oil reservoir: A case study of the Ma18 Well Block[J]. Science Technology and Engineering, 2022, 22(32) : 14174-14183.]
|
[69] |
张益明, 张繁昌, 丁继才, 等. 基于混合深度学习网络的致密砂岩甜点预测[J]. 石油物探, 2021, 60(6): 995-1002.
doi: 10.3969/j.issn.1000-1441.2021.06.013
|
|
[ZHANG Y M, ZHANG F C, DING J C, et al. Sweet spot prediction in tight sand reservoirs by a hybrid deep-learning network[J]. Geophysical Prospecting for Petroleum, 2021, 60(6): 995-1002.]
doi: 10.3969/j.issn.1000-1441.2021.06.013
|
[70] |
王迪, 张益明, 张繁昌, 等. 利用先验信息约束的深度学习方法定量预测致密砂岩“甜点”[J]. 石油地球物理勘探, 2023, 58(1): 65-74.
|
|
[WANG D, ZHANG Y M, ZHANG F C, et al. Quantitative prediction of tight sandstone sweet spots based on deep learning method with prior information constraints[J]. Oil Geophysical Prospecting, 2023, 58(1): 65-74.]
|
[71] |
ANANTHARAMU V, BHATNAGAR P, BIANCO R, et al. Comparison of state-of-the-art machine learning algorithms for reservoir characterization and sweet spot detections[C]// Fourth EAGE Digitalization Conference & Exhibition. European Association of Geoscientists & Engineers, 2024, 2024(1): 1-5.
|
[72] |
KUETE-TATSIPÉ N R. Asset development and sweet spot identification in unconventional reservoirs using machine learning approaches[J]. Journal of Petroleum Science and Engineering, 2022, 218: 111023.
|
[73] |
刘玲利, 常少英, 王孟修, 等. 一种陆相深层-超深层页岩油地质甜点地球物理预测新方法——以渤海湾盆地南堡凹陷古近系东营组-沙河街为例[C]. 第十七届全国古地理学及沉积学学术会议, 北京, 2023.
|
|
[LIU L L, CHANG S Y, WANG M X, et al. New geophysical prediction method for geological sweet spots in continental deep-ultradeep shale oil reservoirs[C]. The 17th National Conference on Palaeogeography and Sedimentology, Beijing, 2023.]
|
[74] |
林同奎, 黄旭日, 熊威, 等. 智能预测和常规地震属性融合的产能“甜点”预测方法[J]. 石油物探, 2023, 62(6): 1142-1153.
doi: 10.12431/issn.1000-1441.2023.62.06.013
|
|
[LIN T K, HUANG X R, XIONG W, et al. Productivity “sweet spot” prediction method combining intelligent estimation and conventional seismic attributes[J]. Geophysical Prospecting for Petroleum, 2023, 62(6): 1142-1153.]
|
[75] |
QIAN K R, HE Z L, LIU X W, et al. Intelligent prediction and integral analysis of shale oil and gas sweet spots[J]. Petroleum Science, 2018, 15(4): 744-755.
|
[76] |
韩可美. 基于大数据技术的页岩油甜点预测方法研究与应用[D]. 荆州: 长江大学, 2024.
|
|
[HAN K M. Research and application of shale oil sweet spot prediction methods based on big data technology[D]. Jingzhou: Yangtze University, 2024.]
|
[77] |
WANG H, GUO Z, KONG X, et al. Application of machine learning for shale oil and gas “sweet spot” prediction[J]. Energies, 2024, 17(9): 2191-2205.
|
[78] |
龚斌, 王虹雅, 王红娜, 等. 基于大数据分析算法的深部煤层气地质—工程一体化智能决策技术[J]. 石油学报, 2023, 44(11): 1949-1958.
doi: 10.7623/syxb202311015
|
|
[GONG B, WANG H Y, WANG H N, et al. Integrated intelligent decision-making technology for deep coalbed methane geology and engineering based on big data analysis algorithms[J]. Acta Petrolei Sinica, 2023, 44(11): 1949-1958.]
doi: 10.7623/syxb202311015
|
[79] |
李道清, 陈永波, 杨东, 等. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35.
doi: 10.12108/yxyqc.20240603
|
|
[LI D Q, CHEN Y B, YANG D, et al. Intelligent comprehensive prediction technology of coalbed methane “sweet spot” reservoir of Jurassic Xishanyao Formation in Baijiahai uplift, Junggar Basin[J]. Lithologic Reservoirs, 2024, 36(6): 23-35.]
|
[80] |
FAN H, ZHAO X, LIANG X, et al. Semi-supervised learning-based petrophysical facies division and “sweet spot” identification of low-permeability sandstone reservoir[J]. Frontiers in Earth Science, 2022, 9: 805342.
|
[81] |
TANG J, FAN B, XU G, et al. A new tool for searching sweet spots by using gradient boosting decision trees and generative adversarial networks[C]. The 12th International Petroleum Technology Conference, Dhahran, Saudi Arabia, 2020.
|
[82] |
QIN Z, XU T. Shale gas geological “sweet spot” parameter prediction method and its application based on convolutional neural network[J]. Scientific Reports, 2022, 12(1): 15405.
|
[83] |
YANG J, WANG M, LI M, et al. Shale lithology identification using stacking model combined with SMOTE from well logs[J]. Unconventional Resources, 2022, 2: 108-115.
|
[84] |
王宗仁. 分频加权重构下的储层岩性识别方法研究[D]. 荆州: 长江大学, 2024.
|
|
[WANG Z R. Study on reservoir lithology identification methods based on frequency-band weighted reconstruction[D]. Jingzhou: Yangtze University, 2024.]
|
[85] |
RAHMANIFARD H, GATES I. A comprehensive review of data-driven approaches for forecasting production from unconventional reservoirs: Best practices and future directions[J]. Artificial Intelligence Review, 2024, 57(8): 213.
doi: 10.1007/s10462-024-10865-5
pmid: 39050688
|
[86] |
崔欣锋. 基于深度学习的多井分层与地层对比方法研究[D]. 大庆: 东北免费靠逼视频, 2023.
|
|
[CUI X F. Research on multi-well stratification and formation correlation methods based on deep learning[D]. Daqing: Northeast Petroleum University, 2023.]
|
[87] |
汪敏, 郭鑫平, 唐洪明, 等. 深度Transformer迁移学习的页岩气储层核心参数预测案例[J]. 地球物理学报, 2023, 66(6): 2592-2610.
|
|
[WANG M, GUO X P, TANG H M, et al. Prediction case of core parameters of shale gas reservoirs through deep Transformer transfer learning[J]. Chinese Journal of Geophysics, 2023, 66(6): 2592-2610.]
|
[88] |
李赛. 高密度电阻率法长期监测异常区自动识别、预警方法研究[D]. 长春: 吉林大学, 2024.
|
|
[LI S. Research on automatic identification and early warning methods for long-term monitoring anomaly zones using high-density resistivity method[D]. Changchun: Jilin University, 2024.]
|
[89] |
石玉江. 油田公司与中油测井一体化工作模式构建与思考[J]. 石油科技论坛, 2023, 42(5): 30-36.
|
|
[SHI Y J. Construction and thinking of working model for integration of CNLC with oilfield companies[J]. Petroleum Science and Technology Forum, 2023, 42(5): 30-36.]
|
[90] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
[91] |
LIU Y, LIU S, LOU Y, et al. A novel approach for evaluating geology-engineering dual sweet spots in tight gas reservoirs in the LX block of China[J]. Scientific Reports, 2025, 15(1): 90371.
|
[92] |
REN P, XIAO Y, CHANG X, et al. A survey of deep active learning[J]. ACM computing surveys (CSUR), 2021, 54(9): 1-40.
|
[93] |
纪守领, 李进锋, 杜天宇, 等. 机器学习模型可解释性方法、应用与安全研究综述[J]. 计算机研究与发展, 2019, 56(10): 2071-2096.
|
|
[JI S L, LI J F, DU T Y, et al. Survey on techniques, applications and security of machine learning interpretability[J]. Journal of Computer Research and Development, 2019, 56(10): 2071-2096.]
|
[94] |
MOSCA E, SZIGETI F, TRAGIANNI S, et al. SHAP-based explanation methods: A review for NLP interpretability[C]. The 29th International Conference on Computational Linguistics(COLING 2022), Gyeongju, 2022.
|
[95] |
HOSPEDALES T, ANTONIOU A, MICAELLI P, et al. Meta-learning in neural networks: A survey[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 44(9): 5149-5169.
|