[1] |
包书景, 葛明娜, 徐兴友, 等. 我国陆相页岩油勘探开发进展与发展建议[J]. 中国地质, 2023, 50(5): 1343-1354.
|
|
[BAO S J, GE M N, XU X Y, et al. Progress and development proposals in the exploration and development of continental shale oil in China[J]. Geology in China, 2023, 50(5): 1343-1354.]
|
[2] |
石林, 张鲲鹏, 慕立俊. 页岩油储层压裂改造技术问题的讨论[J]. 石油科学通报, 2020(4): 496-511.
|
|
[SHI L, ZHANG K P, MU L J. Discussion of yydraulic fracturing technical issues in shale oil reservoirs[J]. Petroleum Science Bulletin, 2020(4): 496-511.]
|
[3] |
刘巍, 曹小朋, 胡慧芳, 等. 页岩油水平井产量影响因素分析及压裂参数优化决策[J]. 油气藏评价与开发, 2024, 14(5): 764-770.
|
|
[LIU W, CAO X P, HU H F, et al. Production influencing factors analysis and fracturing parameters optimization of shale oil horizontal wells[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 764-770.]
|
[4] |
WU S, SU L, ZHAI X, et al. Porosity evolution of lacustrine organic-matter-rich shales in China[C]// SPE/AAPG/SEG Unconventional Resources Technology Conference. San Antonio, Texas, USA, 2016: 1783-1792.
|
[5] |
刘小欢, 刘环宇, 马红星, 等. 深部结蜡页岩油水平井涂层与电加热清防蜡技术[J]. 石油钻采工艺, 2024, 46(2): 238-247.
|
|
[LIU X H, LIU H Y, MA H X, et al. Coating and electric heating technology for paraffin removal and prevention in horizontal shale oil wells with deep paraffin deposition[J]. Oil Drilling & Production Technology, 2024, 46(2): 238-247.]
|
[6] |
刘巍, 曹小朋, 徐耀东, 等. 页岩油井生产数据分析与产能评价方法[J]. 断块油气田, 2023, 30(4): 572-578.
|
|
[LIU W, CAO X P, XU Y D, et al. Production data analysis and productivity evaluation method for shale oil wells[J]. Fault-Block Oil and Gas, 2023, 30(4): 572-578.]
|
[7] |
陈劲松, 曹健志, 韩洪宝, 等. 页岩油气井常用产量预测模型适应性分析[J]. 非常规油气, 2019, 6(3): 48-57.
|
|
[CHEN J S, CAO J Z, HAN H B, et al. Adaptability analysis of commonly used production prediction models for shale oil and gas well[J]. Unconventonal Oil & Gas, 2019, 6(3): 48-57.]
|
[8] |
ARPS J J. Analysis of decline curves[J]. Transactions of the AIME, 1945, 228: 228-247.
|
[9] |
ARPS J J. Estimation of primary oil reserves[J]. AIME, 1956, 267: 182-186.
|
[10] |
王强, 曾济楚, 梁斌. 基于Arps算法的产量递减规律研究与应用[J]. 录井工程, 2021, 32(2): 142-146.
doi: 10.3969/j.issn.1672-9803.2021.02.024
|
|
[WANG Q, ZENG J C, LIANG B. Research and application of yield diminishing law based on arps algorithm[J]. Mud Logging Engineering, 2021, 32(2): 142-146.]
doi: 10.3969/j.issn.1672-9803.2021.02.024
|
[11] |
DUONG A N. Rate-decline analysis for fracture-dominated shale reservoirs: part 2[C]// SPE Canada Unconventional Resources Conference. SPE, 2014: D021S008R001.
|
[12] |
牛娜, 范照伟, 詹泽东, 等. Duong产量递减模型在窄河道致密砂岩气藏中的应用——以中江气田沙溪庙组气藏为例[J]. 地球科学前沿, 2021, 11(10): 1361-1369.
|
|
[NIU N, FAN Z W, ZHAN Z D, et al. Application of duong production decline model in narrow channel tight sandstone gas reservoir—by taking zhongjiang gas reservoir as an example[J]. Advances in Geosciences, 2021, 11(10): 1361-1369.]
|
[13] |
NIU W, LU J, SUN Y. An improved empirical model for rapid and accurate production prediction of shale gas wells[J]. Journal of Petroleum Science and Engineering, 2022, 208(1): 109800.
|
[14] |
HUANG Y, LIU X, XIZHE, et al. Review of the productivity evaluation methods for shale gas wells[J]. Journal of Petroleum Exploration and Production Technology, 2024, 14: 25-39.
|
[15] |
YU S, LEE W J, MIOCEVIC D J, et al. Estimating proved reserves in tight/shale wells using the modified SEPD method[C]// SPE Annual Technical Conference and Exhibition. 2013: D021S023R008.
|
[16] |
SUHAG A, RANJITH R, AMINZADEH F. Comparison of shale oil production forecasting using empirical methods and artificial neural networks[C]// SPE Annual Technical Conference and Exhibition. SPE, 2017: D031S030R006.
|
[17] |
FETKOVICH M J. Decline curve analysis using type curves[J]. Journal of Petroleum Technology, 1980, 32(6): 1065-1077.
|
[18] |
BLASINGAME T A, MCCRAY T L, LEE W J. Decline curve analysis for variable pressure drop/variable flowrate systems[C]// SPE Unconventional Resources Conference / Gas Technology Symposium. 1991: SPE-21513-MS.
|
[19] |
WATTENBARGER R A, EL-BANBI A H, VILLEGAS M E, et al. Production analysis of linear flow into fractured tight gas wells[C]// SPE Rocky Mountain Petroleum Technology Conference/Low-Permeability Reservoirs Symposium. 1998: SPE-39931-MS.
|
[20] |
孙鑫, 刘礼军, 侯树刚, 等. 基于页岩油水两相渗流特性的油井产能模拟研究[J]. 石油钻探技术, 2023, 51(5): 167-172.
|
|
[SUN X, LIU L J, HOU S G, et al. Numerical simulation of shale oil well productivity based on shale oil-water two-phase flow characteristics[J]. Petroleum Drilling Techniques, 2023, 51(5): 167-172.]
|
[21] |
NAKAMOTO T, KANESHIMA, et al. Development of multi-permeability, white oil type numerical simulator capable of predicting shale oil/gas production increased by nano-EOR[C]// Paper presented at the SPWLA 27th Formation Evaluation Symposium of Japan, Virtual. 2022.
|
[22] |
ARANGUREN C, ARAQUE R, et al. Reducing simulation time in a huff-and-puff gas injection project in complex shale reservoirs: sequence-based proxy multi-porosity reservoir simulator[C]// Paper presented at the SPE Canadian Energy Technology Conference and Exhibition, Calgary, Alberta, Canada. 2023.
|
[23] |
CHEN F, SUN L, JIANG B, et al. A review of AI applications in unconventional oil and gas exploration and development[J]. Energies, 2025, 18(2): 391.
|
[24] |
ALOTAIBI B, SCHECHTER D, WATTENBARGER R A. Production forecast, analysis and simulation of Eagle Ford Shale oil wells[C]// SPE Middle East Unconventional Resources Conference and Exhibition. SPE, 2015.
|
[25] |
AGWU O E, ALATEFI S, AZIM R A, et al. Applications of artificial intelligence algorithms in artificial lift systems: A critical review[J]. Flow Measurement and Instrumentation, 2024, 97: 102613.
|
[26] |
ARANGUREN C, FRAGOSO A, AGUILERA R. Sequence-to-sequence (Seq2Seq) long short-term memory (LSTM) for oil production forecast of shale reservoirs[C]// Unconventional Resources Technology Conference (URTeC). 2022: 1803-1816.
|
[27] |
BAARIMAH S O, GAWISH A A, BINMERDHAH A B. Artificial intelligence techniques for predicting the reservoir fluid properties of crude oil systems[J]. International Research Journal of Engineering and Technology, 2015, 2(7): 373-382.
|
[28] |
ELKAN C, NOTO K. Learning classifiers from only positive and unlabeled data[C]// Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, 2008: 213-220.
|
[29] |
JASKIE K, SPANIAS A. Positive and unlabeled learning algorithms and applications: A survey[C]// 2019 10th international conference on information, intelligence, systems and applications (IISA). IEEE, 2019: 1-8.
|
[30] |
COUDRAY O, KERIBIN C, MASSART P, et al. Risk bounds for positive-unlabeled learning under the selected at random assumption[J]. Journal of Machine Learning Research, 2023, 24(107): 1-31.
|
[31] |
KIRYO R, NIU G, DU PLESSIS M C, et al. Positive-unlabeled learning with non-negative risk estimator[C]// Advances in neural information processing systems:30, 2017.
|