[1] |
陆家亮, 赵素平, 孙玉平, 等. 中国天然气产量峰值研究及建议[J]. 天然气工业, 2018, 38(1): 1-9.
|
|
[LU J L, ZHAO S P, SUN Y P, et al. Natural gas production peaks in China: Research and strategic proposals[J]. Natural Gas Industry, 2018, 38(1): 1-9.]
|
[2] |
刘巍, 刘威, 谷建伟. 基于机器学习方法的油井日产油量预测[J]. 石油钻采工艺, 2020, 42(1): 70-75.
|
|
[LIU W, LIU W, GU J W. Oil production prediction based on a machine learning method[J]. Oil Drilling & Production Technology, 2020, 42(1): 70-75.]
|
[3] |
何易东, 任岚, 赵金洲, 等. 页岩气藏体积压裂水平井产能有限元数值模拟[J]. 断块油气田, 2017, (4): 550-556.
|
|
[HE Y D, REN L, ZHAO J Z, et al. Finite element numerical simulation of shale gas production of hydraulically fractured horizontal well with stimulated reservoir volume[J]. Fault-Block Oil and Gas Field, 2017, (4): 550-556.]
|
[4] |
CHU H, DONG P, LEE W J. A deep-learning approach for reservoir evaluation for shale gas wells with complex fracture networks[J]. Advances in Geo-Energy Research, 2023, 7(1): 49-65.
|
[5] |
ARPS J J. Analysis of decline curves[J]. Transactions of the AIME, 1945, 160(01): 228-247.
|
[6] |
DUONG A N. Rate-decline analysis for fracture-dominated shale reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(03): 377-387.
|
[7] |
SESHADRI J, MATTAR L, ASSOCIATES F. Comparison of power law and modified hyperbolic decline methods[C]. SPE Canada Unconventional Resources Conference, Calgary, 2010.
|
[8] |
FETK M J. A simplified approach to water influx calculations-finite aquifer systems[J]. Journal of petroleum technology, 1971, 23(07): 814-828.
|
[9] |
AGARWAL R G, GARDNER D C, KLEINSTEIBER S W, et al. Analyzing well production data using combined-type-curve and decline-curve analysis concepts[C]. SPE Annual Technical Conference and Exhibition, New Orleans, 1993.
|
[10] |
郭子熙, 马骉, 张帅, 等. 深度学习在油气产量预测中的研究进展与技术展望[J]. 天然气工业, 2024, 44(9): 88-98.
|
|
[GUO Z X, MA B, ZHANG S, et al. Research status and prospects of deep learning in oil and gas production prediction[J]. Natural Gas Industry, 2024, 44(9): 88-98.]
|
[11] |
李菊花, 陈晨, 肖佳林. 基于随机森林算法的页岩气多段压裂井产量预测[J]. 长江大学学报(自然科学版), 2020, 17(4): 34-38, 7.
|
|
[LI J H, CHEN C, XIAO J L. Production prediction of shale gas multi-stage fracturing wells based on random forest algorithm[J]. Journal of Yangtze University (Natural Science Edition), 2020, 17(4): 34-38, 7.]
|
[12] |
何佑伟, 贺质越, 汤勇, 等. 基于机器学习的页岩气井产量评价与预测[J]. 石油钻采工艺, 2021, 43(4): 518-524.
|
|
[HE Y W, HE Z Y, TANG Y, et al. Shale gas well production evaluation and prediction based on machine learning[J]. Oil Drilling & Production Technology, 2021, 43(4): 518-524.]
|
[13] |
韩珊, 车明光, 苏旺, 等. 四川盆地威远区块页岩气单井产量预测方法及应用[J]. 特种油气藏, 2022, 29(6): 141-149.
doi: 10.3969/j.issn.1006-6535.2022.06.018
|
|
[HAN S, CHE M G, SU W, et al. Prediction method and application of single well production of shale gas in Weiyuan block, Sichuan Basin[J]. Special Oil & Gas Reservoirs, 2022, 29(6): 141-149.]
|
[14] |
祝元宠, 咸玉席, 李清宇, 等. 基于大数据的页岩气产能预测[J]. 油气井测试, 2019, 28(1): 1-6.
|
|
[ZHU Y C, XIAN Y X, LI Q Y, et al. Shale gas productivity forecast based on big data[J]. Well Testing, 2019, 28(1): 1-6.]
|
[15] |
吴新根, 葛家理. 应用人工神经网络预测油田产量[J]. 石油勘探与开发, 1994, (3): 75-78, 131.
|
|
[WU X G, GE J L. Application of artificial neural network to predict oilfield production[J]. Petroleum Exploration and Development, 1994, (3): 75-78, 131.]
|
[16] |
李彦尊, 白玉湖, 陈桂华, 等. 基于人工神经网络方法的页岩油气产量预测新技术——以美国Eagle Ford页岩油气田为例[J]. 中国海上油气, 2020, 32(4): 104-110.
|
|
[LI Y Z, BAI Y H, CHEN G H, et al. ANN method based on novel technology for production prediction of shale oil and gas: A case study in Eagle Ford[J]. China Offshore Oil and Gas, 2020, 32(4): 104-110.]
|
[17] |
林魂, 孙新毅, 宋西翔, 等. 基于改进人工神经网络的页岩气井产量预测模型研究[J]. 油气藏评价与开发, 2023, 13(4): 467-473.
|
|
[LIN H, SUN X Y, SONG X X, et al. A model for shale gas well production prediction based on improved artificial neural network[J]. Reservoir Evaluation and Development, 2023, 13(4): 467-473.]
|
[18] |
LEE K, LIM J, YOON D, et al. Prediction of shale-gas production at duvernay formation using deep-learning algorithm[J]. SPE Journal, 2019, 24(06): 2423-2437.
|
[19] |
王洪亮, 林霞, 蒋丽维, 等. 基于聚类及长短时记忆神经网络预测油田产量[J]. 石油科学通报, 2024, 9(1): 62-72.
|
|
[WANG H L, LIN X, JIANG L W, et al. An oilfield production prediction method based on clustering and long short-term memory neural network[J]. Petroleum Science Bulletin, 2024, 9(1): 62-72.]
|
[20] |
樊冬艳, 杨灿, 孙海, 等. 基于时间序列相似性与机器学习方法的页岩气井产量预测[J]. 中国免费靠逼视频学报(自然科学版), 2024, 48(3): 119-126.
|
|
[FAN D Y, YANG C, SUN H, et al. Shale gas well production forecasting based on time sequence similarity and machine learning methods[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(3): 119-126.]
|
[21] |
YANG R, LIU X, YU R, et al. Long short-term memory suggests a model for predicting shale gas production[J]. Applied Energy, 2022, 322: 119415.
|
[22] |
李媛, 郭大立, 康芸玮. 融合注意力机制的煤层气产量动态预测[J]. 科学技术与工程, 2023, 23(2): 550-557.
|
|
[LI Y, GUO D L, KANG Y W. Dynamic prediction of coalbed methane production with attention mechanisms[J]. Science Technology and Engineering, 2023, 23(2): 550-557.]
|
[23] |
郭建春, 任文希, 曾凡辉, 等. 基于卷积-长短记忆神经网络的页岩气井短期产量预测与概率性评价[J]. 钻采工艺, 2025, 48(1): 130-137.
|
|
[GUO J C, REN W X, ZENG F H, et al. Short-term production prediction and probability assessment of shale gas wells based on convolution long short-term memory neural network[J]. Drilling & Production Technology, 2025, 48(1): 130-137.]
|
[24] |
韩克宁, 王伟, 樊冬艳, 等. 基于产量递减与LSTM耦合的常压页岩气井产量预测[J]. 油气藏评价与开发, 2023, 13(5): 647-656.
|
|
[HAN K N, WANG W, FAN D Y, et al. Production forecasting for normal pressure shale gas wells based on coupling of production decline method and LSTM model[J]. Reservoir Evaluation and Development, 2023, 13(5): 647-656.]
|
[25] |
任文希, 段又菁, 郭建春, 等. 物理—数据协同驱动的页岩气井产量预测方法[J]. 天然气工业, 2024, 44(9): 127-139.
|
|
[REN W X, DUAN Y J, GUO J C, et al. Physics-informed data-driven shale gas well production prediction method[J]. Natural Gas Industry, 2024, 44(9): 127-139.]
|
[26] |
韩江峡, 薛亮, 位云生, 等. 基于深度自回归神经网络的多井产量概率预测[J]. 石油科学通报, 2024, 9(4): 679-689.
|
|
[HAN J X, XUE L, WEI Y S, et al. Multiple well production rate probabilistic forecasting using deep autoregressive recurrent networks[J]. Petroleum Science Bulletin, 2024, 9(4): 679-689.]
|
[27] |
武娟, 罗仁泽, 雷璨如, 等. 基于大语言模型的致密砂岩储层测井含水饱和度预测[J]. 天然气工业, 2024, 44(9): 77-87.
|
|
[WU J, LUO R Z, LEI C R, et al. Physics-informed data-driven shale gas well production prediction method[J]. Natural Gas Industry, 2024, 44(9): 77-87.]
|
[28] |
XUE L, LI D, DOU H. Artificial intelligence methods for oil and gas reservoir development: current progresses and perspectives[J]. Advances in Geo-Energy Research, 2023, 10(1): 65-70.
|
[29] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. Advances in Neural Information Processing Systems, 2017.
|
[30] |
DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[C]. Proceedings of naacL-HLT, 2019.
|
[31] |
ZHOU T, NIU P, WANG X, et al. One fits all: Power general time series analysis by pretrained LM[J]. Advances in neural information processing systems, 2023, 36: 43322-43355.
|
[32] |
JIN M, ZHANG Y, CHEN W, et al. Position paper: What can large language models tell us about time series analysis[C]. Forty-first International Conference on Machine Learning, 2024.
|
[33] |
OPENAI, ACHIAM J, ADLER S, et al. GPT-4 technical report[J]. arXiv preprint arXiv: 2303.08774, 2023.
|
[34] |
CHOWDHERY A, NARANG S, DEVLIN J, et al. PaLM: Scaling language modeling with pathways[J]. Journal of Machine Learning Research, 2023, 24(240): 1-113.
|
[35] |
TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: Open and efficient foundation language models[J]. arXiv preprint arXiv: 2302.13971, 2023.
|
[36] |
BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[J]. Advances in neural information processing systems, 2020, 33: 1877-1901.
|
[37] |
SANH V, WEBSON A, RAFFEL C, et al. Multitask prompted training enables zero-shot task generalization[J]. arXiv preprint arXiv: 2110.08207, 2021.
|
[38] |
WEI J, WANG X, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language models[J]. Advances in neural information processing systems, 2022, 35: 24824-24837.
|
[39] |
KIM T, KIM J, TAE Y, et al. Reversible instance normalization for accurate time-series forecasting against distribution shift[C]. International Conference on Learning Representations, 2021.
|
[40] |
BA J L, KIROS J R, HINTON G E. Layer normalization[J]. arXiv preprint arXiv: 1607.06450, 2016.
|
[41] |
LU K, GROVER A, ABBEEL P, et al. Frozen pretrained transformers as universal computation engines[C]. Proceedings of the AAAI conference on artificial intelligence, 2022.
|
[42] |
HOULSBY N, GIURGIU A, JASTRZEBSKI S, et al. Parameter-efficient transfer learning for NLP[C]. International conference on machine learning. PMLR, 2019.
|