[1] |
汪海阁, 乔磊, 杨雄, 等. 中石油页岩油气工程技术现状及发展建议[J]. 石油学报, 2024, 45(10): 1552-1564.
doi: 10.7623/syxb202410009
|
|
[WANG H G, QIAO L, YANG X, et al. Current situation and development suggestions of PetroChina’s shale oil and gas engineering technology[J]. Acta Petrolei Sinica, 2024, 45(10): 1552-1564.]
|
[2] |
赵小令, 肖晋宇, 侯金鸣, 等. 中国二氧化碳捕集利用和封存技术经济性与规模预测[J]. 石油勘探与开发, 2023, 50(3): 657-668.
doi: 10.11698/PED.20220793
|
|
[ZHAO X L, XIAO J Y, HOU J M, et al. Economics and scale prediction of carbon dioxide capture, utilization and storage technology in China[J]. Petroleum Exploration and Development, 2023, 50(3): 657-668.]
|
[3] |
邹才能, 董大忠, 熊伟, 等. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326.
|
|
[ZOU C N, DONG D Z, XIONG W, et al. Exploration progress, challenges and countermeasures for new zones, new strata and new types of shale gas in China[J]. Oil & Gas Geology, 2024, 45(2): 309-326.]
|
[4] |
王纪伟, 宋丽阳, 康玉柱, 等. 中美典型常压页岩气开发对比与启示[J]. 特种油气藏, 2024, 31(4): 1-9.
doi: 10.3969/j.issn.1006-6535.2024.04.001
|
|
[WANG J W, SONG L Y, KANG Y Z, et al. Comparison and enlightenment of typical normal-pressure shale gas development between China and the United States[J]. Special Oil & Gas Reservoirs, 2024, 31(4): 1-9.]
|
[5] |
聂海宽, 党伟, 张珂, 等. 中国页岩气研究与发展20年: 回顾与展望[J]. 天然气工业, 2024, 44(3): 20-52.
|
|
[NIE H K, DANG W, ZHANG K, et al. 20 years of research and development of shale gas in China: Review and outlook[J]. Natural Gas Industry, 2024, 44 (3): 20-52.]
|
[6] |
何希鹏, 蔡潇, 高玉巧, 等. 页岩气勘探开发实验技术研究进展与发展方向[J]. 天然气工业, 2024, 44(7): 12-26.
|
|
[HE X P, CAI X, GAO Y Q, et al. Research progress and development direction of experimental technologies for shale gas exploration and development[J]. Natural Gas Industry, 2024, 44(7): 12-26.]
|
[7] |
杨少强, 张庆伦, 杨栋, 等. 实时高温作用下油页岩力学及破裂特性演变规律研究[J]. 岩石力学与工程学报, 2024, 43(11): 2700-2711.
|
|
[YANG S Q, ZHANG Q L, YANG D, et al. Study on the evolution law of mechanical and fracture characteristics of oil shale under real-time high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(11): 2700-2711.]
|
[8] |
刘保国, 于明圆, 孙景来, 等. 水-力耦合作用下页岩力学特性及其损伤本构模型研究[J]. 岩石力学与工程学报, 2023, 42(5): 1041-1054.
|
|
[LIU B G, YU M Y, SUN J L, et al. Study on the mechanical properties of shale and its damage constitutive model under the coupling action of water and force[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(5): 1041-1054.]
|
[9] |
赵志红, 金浩增, 郭建春, 等. 水化作用下深层页岩软化本构模型研究[J]. 岩石力学与工程学报, 2022, 41(S2): 3189-3197.
|
|
[ZHAO Z H, JIN H Z, GUO J C, et al. Study on the softening constitutive model of deep shale under hydration[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S2): 3189-3197.]
|
[10] |
王倩, 周英操, 唐玉林, 等. 泥页岩井壁稳定影响因素分析[J]. 岩石力学与工程学报, 2012, 31(1): 171-179.
|
|
[WANG Q, ZHOU Y C, TANG Y L, et al. Analysis of influencing factors on the stability of shale wellbore[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1): 171-179.]
|
[11] |
李爱清, 李明涛, 王博, 等. 松南地区页岩地层井壁稳定分析[J]. 长江大学学报(自然科学版), 1-8[2025-08-10]. http://doi.org/10.16772/j.cnki.1673-1409.20240822.001.
URL
|
|
[LI A Q, LI M T, WANG B, et al. Analysis on wellbore stability of shale formations in the southern Songliao Basin[J]. Journal of Yangtze University (Natural Science Edition), 1-8[2025-08-10]. http://doi.org/10.16772/j.cnki.1673-1409.20240822.001.]
URL
|
[12] |
白杨, 翟玉芬, 罗平亚, 等. 四川长宁页岩气长水平段油基钻井液井壁稳定技术[J]. 钻采工艺, 2024, 47(6): 152-158.
|
|
[BAI Y, ZHAI Y F, LUO P Y, et al. Wellbore stability technology of oil-based drilling fluid in long horizontal sections of shale gas wells in Changning, Sichuan[J]. Drilling & Production Technology, 2024, 47(6): 152-158.]
|
[13] |
WAN X, ZHANG W, DENG K, et al. Shale gas completion fracturing technology based on FAE controlled burning explosion[J]. Energy, 2024, 296: 130941.
|
[14] |
白昕, 陈睿倩, 商斐, 等. 松辽盆地白垩系青山口组页岩沉积环境及其含油性特征[J]. 石油实验地质, 2024, 46(5): 1063-1074.
|
|
[BAI X, CHEN R Q, SHANG F, et al. Sedimentary environment and oil-bearing characteristics of the cretaceous Qingshankou Formation shale in the Songliao Basin[J]. Petroleum Geology & Experiment, 2024, 46(5): 1063-1074.]
|
[15] |
龙钰, 王爽, 陈筠, 等. 黔北地区矿物组分对页岩储层力学特性的影响[J]. 科学技术与工程, 2024, 24(27): 11638-11647.
|
|
[LONG Y, WANG S, CHEN Y, et al. Influence of mineral components on the mechanical properties of shale reservoirs in Northern Guizhou[J]. Science Technology and Engineering, 2024, 24(27): 11638-11647.]
|
[16] |
薄克浩. 硬脆性泥页岩地层井壁围岩强度劣化的化学断裂力学机理研究[D]. 北京: 中国免费靠逼视频(北京), 2023.
|
|
[Bo K H. Research on the chemical fracture mechanics mechanism of the strength deterioration of the surrounding rock of the wellbore in hard and brittle mudstone and shale formations[D]. Beijing: China University of Petroleum (Beijing), 2023.]
|
[17] |
唐颖, 邢云, 李乐忠, 等. 页岩储层可压裂性影响因素及评价方法[J]. 地学前缘, 2012, 19(5): 356-363.
|
|
[TANG Y, XING Y, LI L Z, et al. Influencing factors and evaluation methods of the fracturability of shale reservoirs[J]. Earth Science Frontiers, 2012, 19(5): 356-363.]
|
[18] |
刘俊新, 张可, 刘伟, 等. 不同围压及应变速率下页岩变形及破损特性试验研究[J]. 岩土力学, 2017, 38(S1): 43-52.
|
|
[LIU J X, ZHANG K, LIU W, et al. Experimental study on the deformation and failure characteristics of shale under different confining pressures and strain rates[J]. Rock and Soil Mechanics, 2017, 38(S1): 43-52.]
|
[19] |
李卉, 李岩, 曹乐乐, 等. 含水率对页岩动态弹性力学性质的影响研究[J]. 地质与勘探, 2020, 56(4): 870-877.
|
|
[LI H, LI Y, CAO L L, et al. Study on the influence of water content on the dynamic elastic mechanical properties of shale[J]. Geology and Exploration, 2020, 56(4): 870-877.]
|
[20] |
柳兵, 党炜, 聂毓斌. 酸作用时间对页岩微观特征和力学性质的影响[J]. 地下空间与工程学报, 2024, 20(2): 480-487.
doi: 10.20174/j.JUSE.2024.02.14
|
|
[LIU B, DANG W, NIE Y B. Influence of acid action time on the microscopic characteristics and mechanical properties of shale[J]. Chinese Journal of Underground Space and Engineering, 2024, 20(2): 480-487.]
|
[21] |
董卓, 林天然. 层理倾角与孔道直径对页岩单轴破坏特征影响的数值研究[J]. 工程地质学报, 2024, 32(4): 1249-1261.
|
|
[DONG Z, LIN T R. Numerical study on the influence of bedding dip angle and pore diameter on the uniaxial failure characteristics of shale[J]. Journal of Engineering Geology, 2024, 32(4): 1249-1261.]
|
[22] |
沈云琦, 苏建政, 李凤霞, 等. 潜江凹陷潜四下段页岩油储层力学性质特征研究[J]. 非常规油气, 2021, 8(1): 106-115.
|
|
[SHEN Y Q, SU J Z, LI F X, et al. Study on the mechanical property characteristics of shale oil reservoirs in the lower fourth member of the Qianjiang Formation in the Qianjiang Sag[J]. Unconventional Oil & Gas, 2021, 8 (1): 106-115.]
|
[23] |
龚训, 金之钧, 马新华, 等. 川南地区志留系龙马溪组页岩力学性质及微观破裂机理[J]. 石油与天然气地质, 2024, 45(5): 1447-1455.
|
|
[GONG X, JIN Z J, MA X H, et al. Mechanical properties and microscopic fracture mechanism of the Longmaxi shale in the Silurian of the southern Sichuan Region[J]. Oil & Gas Geology, 2024, 45 (5): 1447-1455.]
|
[24] |
洪宇, 闫建平, 郭伟, 等. 川南深层页岩气储层岩石力学参数及各向异性特征[J]. 天然气勘探与开发, 2025, 48(1): 30-39.
doi: 10.12055/gaskk.issn.1673-3177.2025.01.004
|
|
[HONG Y, YAN J P, GUO W, et al. Rock mechanical parameters and anisotropic characteristics of deep shale gas reservoirs in southern Sichuan[J]. Natural Gas Exploration and Development, 2025, 48(1): 30-39.]
doi: 10.12055/gaskk.issn.1673-3177.2025.01.004
|
[25] |
王奇生, 王天宇, 钟朋峻, 等. 龙马溪组页岩表面孔隙结构与细观力学特性研究[J]. 石油科学通报, 2023, 8(5): 626-636.
|
|
[WANG Q S, WANG T Y, ZJONG P J, et al. Study on the surface pore structure and mesoscopic mechanical properties of longmaxi shale[J]. Petroleum Science Bulletin, 2023, 8(5): 626-636.]
|
[26] |
任岚, 蒋豪, 赵金洲, 等. 基于能量演化的超深层高温页岩脆性评价方法[J]. 地下空间与工程学报, 2023, 19(1): 148-156.
|
|
[REN L, JIANG H, ZHAO J Z, et al. A brittle evaluation method for ultra-deep high-temperature shale based on energy evolution[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(1): 148-156.]
|
[27] |
孙川翔, 聂海宽, 苏海琨, 等. 温压耦合作用下四川盆地深层龙马溪组页岩孔渗和岩石力学特征[J]. 石油勘探与开发, 2023, 50(1): 77-88.
doi: 10.11698/PED.20220235
|
|
[SUN C X, NIE H K, SU H K, et al. Pore permeability and rock mechanical characteristics of the deep Longmaxi shale in the Sichuan Basin under the coupling action of temperature and pressure[J]. Petroleum Exploration and Development, 2023, 50(1): 77-88.]
|
[28] |
王小军, 梁利喜, 赵龙, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组含油页岩岩石力学特性及可压裂性评价[J]. 石油与天然气地质, 2019, 40(3): 661-668.
|
|
[WANG X J, LIANG L X, ZHAO L, et al. Rock mechanical characteristics and fracability evaluation of oil-bearing shales in the Lucaogou Formation in the Jimusaer Sag, Junggar basin[J]. Oil & Gas Geology, 2019, 40(3): 661-668.]
|
[29] |
SUN X K, LI S D, LI X, et al. The mechanical properties of Lucaogou shale layered samples and the influence of minerals on fracture propagation[J]. Petroleum Science, 2024, 21(6): 3899-3908.
|
[30] |
刘合, 孟思炜, 王素玲, 等. 古龙页岩力学特征与裂缝扩展机理[J]. 石油与天然气地质, 2023, 44(4): 820-828.
|
|
[LIU H, MENG S W, WANG S L, et al. Mechanical characteristics and fracture propagation mechanism of Gulong shale[J]. Oil & Gas Geology, 2023, 44(4): 820-828.]
|
[31] |
杨智光, 李吉军, 齐悦, 等. 松辽盆地富含伊利石的古龙页岩水化特性及其对岩石力学参数的影响[J]. 大庆石油地质与开发, 2022, 41(3): 139-146.
|
|
[YANG Z G, LI J J, QI Y, et al. Hydration characteristics of Gulong shale rich in illite in the Songliao Basin and its influence on rock mechanical parameters[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(3): 139-146.]
|
[32] |
施健飞, 王建丰, 刘大永, 等. 页岩成熟过程中微观力学性质演化的控制因素——以鄂尔多斯盆地长7段页岩模拟实验为例[J]. 地球化学, 2025, 54(2): 224-233.
|
|
[SHI J F, WANG J F, LIU D Y, et al. Controlling factors of the evolution of microscopic mechanical properties during the maturity process of shale: Taking the simulation experiment of the Chang 7 shale in the Ordos Basin as an example[J]. Geochimica, 2025, 54(2): 224-2333.]
|
[33] |
解馨慧, 邓虎成, 胡蓝霄, 等. 基于纳米压痕和FE-SEM技术探究页岩页理结构对其微—宏观力学行为的影响[J]. 地质论评, 2024, 70(S1): 319-322.
|
|
[XIE X H, DENG H C, HU L X, et al. Exploring the influence of shale bedding structure on its micro-macro mechanical behavior based on nano-indentation and FE-SEM technologies[J]. Geological Review, 2024, 70(S1): 319-322.]
|
[34] |
余海棠, 庄严, 梁利喜, 等. 基于岩石力学特性的钻井液优选研究——以鄂尔多斯盆地长7页岩地层为例[J]. 石油地质与工程, 2023, 37(5): 109-114+119.
|
|
[YU H T, ZHUANG Y, LIANG L X, et al. Study on the optimization of drilling fluids based on rock mechanical characteristics: Taking the Chang 7 shale formation in the Ordos Basin as an example[J]. Petroleum Geology and Engineering, 2023, 37(5): 109-114+119.]
|
[35] |
张轩诚. 压裂液滞留对页岩储层岩石物理参数的影响[D]. 西安: 西安免费靠逼视频, 2023.
|
|
[ZHANG X C. Influence of fracturing fluid retention on rock physical parameters of shale reservoirs[D]. Xi’an: Xi’an Shiyou University, 2023.]
|
[36] |
赵珠宇, 闫传梁, 薛锦春, 等. 古近系湖相储层岩石力学特性及各向异性研究——以渤海湾盆地东南部沙河街组为例[J]. 地球物理学进展, 2025, 40(2): 806-816.
doi: 10.6038/pg2025II0025
|
|
[ZHAO Z Y, YAN C L, XUE J C, et al. Study on the rock mechanical characteristics and anisotropy of paleogene lacustrine reservoirs: Taking the Shahejie Formation in the southeast of the Bohai Bay Basin as an example[J]. Progress in Geophysics, 2025, 40(2): 806-816.]
|
[37] |
王爱民, 王发明, 贺文卿, 等. 济阳坳陷油页岩力学性能特征实验[J]. 特种油气藏, 2023, 30(5): 144-150.
doi: 10.3969/j.issn.1006-6535.2023.05.019
|
|
[WANG A M, WANG F M, HE W Q, et al. Experimental study on the mechanical performance characteristics of oil shales in the Jiyang Depression[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 144-150.]
|
[38] |
韩磊, 时贤, 刘明, 等. 基于点矩阵技术的纹层页岩微观力学性质研究[J]. 中国科学: 物理学力学天文学, 2023, 53(8): 162-176.
|
|
[HAN L, SHI X, LIU M, et al. Study on the microscopic mechanical properties of laminated shales based on the point matrix technology[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2023, 53(8): 162-176.]
|
[39] |
钟安海. 含纹层陆相页岩力学参数的尺寸效应及其对压裂裂缝的影响[J]. 油气地质与采收率, 2023, 30(5): 22-30.
|
|
[ZHONG A H. Size effect of mechanical parameters of continental shales with laminations and its influence on fracturing fractures[J]. Petroleum Geology and Recovery Efficiency, 22023, 30(5): 22-30.]
|
[40] |
JIN Z, LI W, JIN C, et al. Anisotropic elastic, strength, and fracture properties of Marcellus shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 109: 124-137.
|
[41] |
SCHWARTZ B, ELSWORTH D, MARONE C. Relationships between mechanical and transport properties in Marcellus shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 119: 205-210.
|
[42] |
ALTAWATI F, EMADI H. Effects of cyclic cryogenic treatment on rock physical and mechanical properties of Eagle Ford shale samples: An experimental study[J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103772.
|
[43] |
HU D, MATZAR L, MARTYSEVICH V. Effect of natural fractures on eagle ford shale mechanical properties[C]. SPE Annual Technical Conference and Exhibition, Amsterdam, the Netherlands, 2014.
|
[44] |
JANSEN T, ZHU D, HILL A D. The effect of rock mechanical properties on fracture conductivity for shale formations[C]. SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA, 2015.
|
[45] |
ALTAWATI F, EMADI H, KHALIL R. Investigating effects of cryogenic treatment on rock and dynamic elastic properties of eagle ford shale rock samples[C]. ARMA US Rock Mechanics/Geomechanics Symposium, Houston, Texas, USA, ARMA, 2021.
|
[46] |
SONE H, ZOBACK M D, et al. Mechanical properties of shale-gas reservoir rocks — Part 1: Static and dynamic elastic properties and anisotropy[J]. Geophysics, 2013, 78(5): D381-D392.
|
[47] |
LIN S, LAI B. Experimental investigation of water saturation effects on Barnett Shale’s geomechanical behaviors[C]. SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, 2013.
|
[48] |
KUMAR V, SONDERGELD C, RAI C S. Effect of mineralogy and organic matter on mechanical properties of shale[J]. Interpretation, 2015, 3(3): SV9-SV15.
|
[49] |
李庆辉, 陈勉, 金衍. 含气页岩破坏模式及力学特性的试验研究[J]. 岩石力学与工程学报, 2012, 31(S2): 3763-3771.
|
|
[LI Q H, CHEN M, JIN Y. Experimental study on the failure mode and mechanical characteristics of gas-bearing shales[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2): 763-3771.]
|
[50] |
RASSOULI F S, ZOBACK M D. Long-term creep experiments on Haynesville shale rocks[C]. ARMA US Rock Mechanics/Geomechanics Symposium, San Francisco, California, USA, ARMA, 2015.
|
[51] |
LI C, OSTADHASSAN M, ABARGHANI A, et al. Multi-scale evaluation of mechanical properties of the Bakken shale[J]. Journal of materials science, 2019, 54: 2133-2151.
doi: 10.1007/s10853-018-2946-4
|
[52] |
LIU K, OSTADHASSAN M, BUBACH B, et al. Statistical grid nanoindentation analysis to estimate macro-mechanical properties of the Bakken shale[J]. Journal of Natural Gas Science and Engineering, 2018, 53: 181-190.
|
[53] |
HAVENS J. Mechanical properties of the Bakken Formation[M]. Colorado: Colorado School of Mines, 2012.
|
[54] |
TIKHOTSKY S A, BAYUK I O, BELOBORODOV D E, et al. Multiscale experimental study of microstructure and elastic and geomechanical properties of Domanik and Bazhenov rocks[C]. EAGE/SPE Workshop on Shale Science 2017, Moscow, Russia, 2017.
|
[55] |
KULYAPIN P, SOKOLOVA T F. A case study about formation evaluation and rock physics modeling of the Bazhenov shale[J]. Petrophysics, 2014, 55(03): 211-218.
|
[56] |
TURAKHANOV A, TSYSHKOVA A, MUKHINA E, et al. Cyclic subcritical water injection into Bazhenov oil shale: Geochemical and petrophysical properties evolution due to hydrothermal exposure[J]. Energies, 2021, 14(15): 4570.
|
[57] |
DONG T, HARRIS N B, AYRANCI K, et al. The impact of rock composition on geomechanical properties of a shale formation: Middle and Upper Devonian Horn River Group shale, Northeast British Columbia, Canada[J]. AAPG Bulletin, 2017, 101(2): 177-204.
|
[58] |
YANG S, HARRIS N B, DONG T, et al. Natural fractures and mechanical properties in a horn river shale core from 22well logs and hardness measurements[J]. SPE Reservoir Evaluation & Engineering, 2018, 21(3): 671-682.
|
[59] |
CHOU Q, GAO J, SOMERWIL M. Analysis of geomechanical data for Horn River Basin gas shales, NE British Columbia, Canada[C]. SPE Middle East Unconventional Resources Conference and Exhibition. Muscat, Oman, SPE, 2011: SPE-142498-MS.
|
[60] |
CHARLTON T S, ROUAINIA M, APLIN A C et al. Nanoindentation of Horn River Basin shales: The micromechanical contrast between overburden and reservoir formations[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(3): e2022JB025957.
|
[61] |
YAGHOUBI A, SAMAROO M, DUSSEAULT M B. Anisotropic behavior and mechanical characteristics of the Montney Formation[J]. International Journal of Rock Mechanics and Mining Sciences, 2024, 180: 105831.
|
[62] |
VISHKAI M, WANG J, WONG R C K, et al. Modeling geomechanical properties in the Montney Formation, Alberta, Canada[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 96: 94-105.
|
[63] |
VAISBLAT N, HARRIS N B, AYRANCI K, et al. Rock compositional control on geomechanical properties of the Montney Formation, western Canadian Basin[J]. Bulletin of Canadian Energy Geoscience, 2024, 71(2): 143-170.
|
[64] |
DONG T, HARRIS N B, KNAPP L J, et al. The effect of thermal maturity on geomechanical properties in shale reservoirs: An example from the Upper Devonian Duvernay Formation, western Canada sedimentary basin[J]. Marine and Petroleum Geology, 2018, 97: 137-153.
|
[65] |
FOX A D, SOLTANZADEH M. A regional geomechanical study of the Duvernay Formation in Alberta, Canada[J]. GeoConvention 2015: 4-8.
|
[66] |
WANG P, CHEN Z, PANG, X, et al. Revised models for determining TOC in shale play: Example from Devonian Duvernay shale, western Canada sedimentary basin[J]. Marine and petroleum geology, 2016, 70: 304-319.
|
[67] |
SHEN L, SCHMITT D R. Determination of the anisotropic mechanical properties of a calcareous shale from the Duvernay unconventional reservoir[C]. ARMA US Rock Mechanics/Geomechanics Symposium, Seattle, Washington, USA. ARMA, 2018: ARMA-2018-217.
|
[68] |
BOULENOUAR A, MIGHANI S, POURPAK H, et al. Mechanical properties of Vaca Muerta shales from nano-indentation tests[C]. ARMA US Rock Mechanics/Geomechanics Symposium, San Francisco, California, USA. ARMA, 2017: ARMA-2017-0220.
|
[69] |
VARELA R A, HASBANI J G. A rock mechanics laboratory characterization of Vaca Muerta formation[C]. ARMA US Rock Mechanics/Geomechanics Symposium, San Francisco, California, USA. ARMA, 2017: ARMA-2017-0167.
|
[70] |
MASSARO A S, ESPINOZA D N, FRYDMAN M, et al. Analyzing a suitable elastic geomechanical model for Vaca Muerta Formation[J]. Journal of South American Earth Sciences, 2017, 79: 472-488.
|
[71] |
NOYA M, CELLEN H, CAMILION E, et al. Nanoindentation characterization of Vaca Muerta Formation shale rocks and its relation to geomechanical model and core plugs properties[C]. ARMA US Rock Mechanics/Geomechanics Symposium, Atlanta, Georgia, USA. ARMA, 2023: ARMA-2023-0758.
|
[72] |
郭鹏, 李晓, 李守定, 等. 真三轴应力状态下海相与陆相页岩射孔压裂裂缝扩展规律对比研究[J]. 工程地质学报, 2024, 32(4): 1273-1280.
|
|
[GUO P, LI X, LI S D, et al. Comparative study on the fracture propagation law of perforation fracturing in marine and continental shale under true triaxial stress state[J]. Journal of Engineering Geology, 2024, 32(4): 1273-1280.]
|
[73] |
索彧, 苏显蘅, 何文渊, 等. 松辽盆地大情字井地区砂-页复合储层可压性评价[J]. 岩石力学与工程学报, 2024, 43(9): 2140-2151.
|
|
[SUO Y, SU X H, HE W Y, et al. Evaluating the fracturability of sand-shale composite reservoirs in the Daqingzi well area of the Songliao Basin[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(9): 2140-2151.]
|
[74] |
崔壮, 侯冰. 深层页岩巴西劈裂破坏力学行为数值模拟研究[J]. 石油钻探技术, 2024, 52(2): 218-228.
|
|
[CUI Z, HOU B. Numerical simulation study on the mechanical behavior of deep shale under Brazilian splitting failure[J]. Petroleum Drilling Techniques, 2024, 52(2): 218-228.]
|
[75] |
闫博鸿, 赵建国, 肖增佳, 等. 潜江组页岩弹性性质分析及各向异性岩石物理建模[J]. 地球物理学报, 2024, 67(7): 2802-2819.
|
|
[YAN B H, ZHAO J G, XIAO Z J, et al. Analysis of elastic properties and anisotropic rock physics modeling of the Qianjiang Formation shale[J]. Chinese Journal of Geophysics, 2024, 67(7): 2802-2819.]
|
[76] |
丛奇, 陈君青, 卢贵武, 等. 利用分子动力学模拟研究页岩吸附能力的影响因素及微观机理的综述[J]. 中南大学学报(自然科学版), 2022, 53(9): 3474-3489.
|
|
[CONG Q, CHEN J Q, LU G W, et al. Review on the influencing factors and microscopic mechanism of shale adsorption capacity studied by molecular dynamics simulation[J]. Journal of Central South University (Natural Science Edition), 2022, 53(9): 3474-3489.]
|
[77] |
LIU H, SU H, SUN L, et al. State-of-the-art review on the use of AI-enhanced computational mechanics in geotechnical engineering[J]. Artificial Intelligence Review, 2024, 57(8): 196.
|
[78] |
徐国权, 王鑫瑀. 基于MARS的岩石抗拉强度预测模型[J]. 长江科学院院报, 2024, 41(2): 135-141.
|
|
[XU G Q, WANG X Y. Prediction model of rock tensile strength based on MARS[J]. Journal of Yangtze River Scientific Research Institute, 2024, 41(2): 135-141.]
|
[79] |
CAI W, DING J, LI Z, et al. Study on rock mechanics parameter prediction method based on DTW Similarity and machine-learning algorithms[J]. Petrophysics-The SPWLA Journal of Formation Evaluation and Reservoir Description, 2024, 65(2): 128-144.
|
[80] |
王驰, 沈晨, 黄庆, 等. 夜间动物图像自监督学习增强与检测方法[J]. 中国光学(中英文), 2024, 17(5): 1087-1097.
|
|
[WANG C, SHEN C, HUANG Q, et al. Self-supervised learning enhancement and detection method for nocturnal animal images[J]. Chinese Optics (Chinese and English), 2024, 17(5): 1087-1097.]
|
[81] |
杜学彬, 张雄, 丁文蔷. 基于无监督学习的探地雷达图像自动分类[J]. 工程地球物理学报, 2024, 21(6): 1068-1077.
|
|
[DU X B, ZHANG X, DING W Q. Automatic classification of ground penetrating radar images based on unsupervised learning[J]. Journal of Engineering Geophysics, 2024, 21(6): 1068-1077.]
|
[82] |
钱政, 严亮, 孙顺远. 多特征融合的半监督流形约束定位方法[J]. 吉林大学学报(理学版), 2024, 62(5): 1219-1227.
|
|
[QIAN Z, YAN L, SUN S Y. Semi-supervised manifold constrained localization method with multi-feature fusion[J]. Journal of Jilin University (Science Edition), 2024, 62(5): 1219-1227.]
|
[83] |
伍秋姿, 陈丽清, 陈玉龙, 等. 基于机器学习算法的深部页岩储层物性预测及有利勘探区优选[J]. 非常规油气, 2024, 11(5): 95-105.
|
|
[WU Q Z, CHRN L Q, CHEN Y L, et al. Prediction of physical properties of deep shale reservoirs and optimization of favorable exploration areas based on machine learning algorithms[J]. Unconventional Oil & Gas, 2024, 11(5): 95-105.]
|
[84] |
李玉伟, 李子健, 邵力飞, 等. 基于物理信息约束的页岩油储层可压性评价新方法[J]. 煤田地质与勘探, 2023, 51(10): 37-51.
|
|
[LI Y W, LI Z J, SHAO L F, et al. A new method for evaluating the fracturability of shale oil reservoirs based on physical information constraints[J]. Coal Geology & Exploration, 2023, 51(10): 37-51.]
|
[85] |
MATIN S S, FARAHZADI L, MAKAREMI S, et al. Variable selection and prediction of uniaxial compressive strength and modulus of elasticity by random forest[J]. Applied Soft Computing, 2018, 70: 980-987.
|
[86] |
袁超. 不同裂隙几何特征岩体力学特性及强度预测研究[D]. 西安: 西安科技大学, 2021.
|
|
[YUAN C. Research on mechanical properties and strength prediction of rock masses with different fracture geometric characteristics[D]. Xi’an: Xi’an University of Science and Technology, 2021.]
|
[87] |
李子健. 基于物理信息约束的岩石力学参数及地应力智能预测研究[D]. 大庆: 东北免费靠逼视频, 2023.
|
|
[LI Z J. Research on intelligent prediction of rock mechanical parameters and in-situ stress based on physical information constraints[D]. Daqing: Northeast Petroleum University, 2023.]
|
[88] |
吴禄源, 李建会, 马丹, 等. 基于集成学习与贝叶斯优化的岩石抗压强度预测[J]. 地球科学, 2023, 48(5): 1686-1695.
|
|
[WU L Y, LI J H, MA D, et al. Prediction of rock compressive strength based on ensemble learning and Bayesian optimization[J]. Earth Science, 2023, 48(5): 1686-1695.]
|
[89] |
CAI W, DING J, LI Z, et al. Study on rock mechanics parameter prediction method based on DTW similarity and machine-learning algorithms[J]. Petrophysics-The SPWLA Journal of Formation Evaluation and Reservoir Description, 2024, 65(02): 128-144.
|
[90] |
陈晓君, 陈小根, 宋刚, 等. 基于人工神经网络模型的岩石特性预测[J]. 探矿工程(岩土钻掘工程), 2019, 46(1): 34-38.
|
|
[CHEN X J, CHEN X G, SONG G, et al. Prediction of rock characteristics based on artificial neural network model[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2019, 46(1): 34-38.]
|
[91] |
WANG Y T, ZHANG X, LIU X S. Machine learning approaches to rock fracture mechanics problems: Mode-I fracture toughness determination[J]. Engineering Fracture Mechanics, 2021, 253: 107890.
|
[92] |
YU H, TALEGHANI A D, BALUSHI F, et al. Machine learning for rock mechanics problems; an insight[J]. Frontiers in Mechanical Engineering, 2022, 8: 1003170.
|
[93] |
李天翔, 刘嘉. 基于深度神经网络的平行钢丝腐蚀短裂纹疲劳寿命预测研究[J]. 武汉理工大学学报, 2024, 46(08): 53-60.
|
|
[LI T X, LIU J. Research on fatigue life prediction of corroded short cracks in parallel steel wires based on deep neural network[J]. Journal of Wuhan University of Technology, 2024, 46(8): 53-60.]
|
[94] |
方志坚, 巴晶, 熊繁升, 等. 利用机器学习与改进岩石物理模型预测页岩油层系横波速度[J]. 石油地球物理勘探, 2024, 59(3): 381-391.
|
|
[FANG Z J, BA J, XIONG F S, et al. Prediction of shear wave velocity in shale oil formations using machine learning and improved rock physics model[J]. Oil Geophysical Prospecting, 2024, 59(3): 381-391.]
|
[95] |
王文鹏. 基于BP神经网络的岩石节理剪切力学特性预测研究[D]. 大连: 大连理工大学, 2021.
|
|
[WANG W P. Research on the prediction of rock joint shear mechanical properties based on BP neural network[D]. Dalian: Dalian University of Technology, 2021.]
|
[96] |
LIU Z H, WU X. Study on mechanic parameters selection of rock slope based on BP neural network displacement back analysis[J]. Academic Journal of Engineering and Technology Science, 2021, 4(6): 31-38.
|
[97] |
殷胜. 长宁地区页岩储层的可压性研究[D]. 北京: 中国免费靠逼视频(北京), 2019.
|
|
[YIN S. Research on the fracturability of shale reservoirs in changning area[D]. Beijing: China University of Petroleum (Beijing), 2019.]
|
[98] |
王洁. 温压耦合作用下深部岩石力学行为的智能预测研究[D]. 湘潭: 湘潭大学, 2020.
|
|
[WANG J. Intelligent prediction research on the mechanical behavior of deep rocks under the coupling of temperature and pressure[D]. Xiangtan: Xiangtan University, 2020.]
|
[99] |
HUANG K X, LIU W H, WU C R, et al. Prediction of shale brittleness index based on cuckoo-BP neural network[J]. China Petroleum Exploration, 2024, 29(2): 158-166
doi: 10.3969/j.issn.1672-7703.2024.02.013
|
[100] |
张庆丰, 李子玲, 张继坤, 等. 鄂尔多斯盆地保德区块二叠系太原组—山西组主采煤层脆性评价——基于卷积神经网络方法[J]. 石油实验地质, 2025, 47(1): 204-212.
|
|
[ZHANG Q F, LI Z L, ZHANG J K, et al. Brittleness evaluation of the main coal seams in the Permian Taiyuan Formation-Shanxi Formation in Baode block of Ordos Basin: Based on the convolutional neural network method[J]. Petroleum Geology & Experiment, 2025, 47(1): 204-212]
|
[101] |
孙丁伟, 王磊, 杨栋, 等. 基于卷积神经网络的页岩CT分形维数预测及其抗干扰能力应用[J]. 太原理工大学学报, 2024, 55(6): 1045-1052.
|
|
[SUN D W, WANG L, YANG D, et al. Prediction of shale CT fractal dimension based on convolutional neural network and its application in anti-interference ability[J]. Journal of Taiyuan University of Technology, 2024, 55(6): 1045-1052.]
|
[102] |
HE M, ZHANG Z, LI N. Deep convolutional neural network-based method for strength parameter prediction of jointed rock mass using drilling logging data[J]. International Journal of Geomechanics, 2021, 21(7): 04021111.
|
[103] |
LI X, LIU Z, CUI S, et al. Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 347: 735-753.
|
[104] |
SUN H, DU W, LIU C. Uniaxial compressive strength determination of rocks using X-ray computed tomography and convolutional neural networks[J]. Rock Mechanics and Rock Engineering, 2021, 54(8): 4225-4237.
|
[105] |
纪思奇. 基于卷积神经网络的数字岩心弹性参数同步预测[D]. 青岛: 中国免费靠逼视频(华东), 2022.
|
|
[JI S Q. Synchronous prediction of elastic parameters of digital cores based on convolutional neural network[D]. Qingdao: China University of Petroleum (East China), 2022.]
|
[106] |
杜睿山, 黄玉朋, 付晓飞, 等. 基于SMOTE和XGBoost的天然气水合物与天然气储层识别[J]. 特种油气藏, 2024, 31(5): 11-19.
doi: 10.3969/j.issn.1006-6535.2024.05.002
|
|
[DU R S, HUANG Y P, FU X F, et al. Identification of natural gas hydrate and natural gas reservoirs based on SMOTE and XGBoost[J]. Special Oil & Gas Reservoirs, 2024, 31(5): 11-19.]
|
[107] |
宋英华, 江晨, 李墨潇, 等. 基于改进Smote-GBDT算法的岩爆预测模型[J]. 中国安全科学学报, 2023, 33(9): 25-32.
doi: 10.16265/j.cnki.issn1003-3033.2023.09.0850
|
|
[SONG Y H, JIANG C, LI M X, et al. Rockburst prediction model based on improved smote-GBDT algorithm[J]. China Safety Science Journal, 2023, 33(9): 25-32.]
doi: 10.16265/j.cnki.issn1003-3033.2023.09.0850
|
[108] |
高永涛, 朱强, 吴顺川, 等. 基于AVOA-XGBoost模型的岩爆预测研究[J]. 华中科技大学学报(自然科学版), 2023, 51(12): 151-157.
|
|
[GAO Y T, ZHU Q, WU S C, et al. Research on rockburst prediction based on AVOA-XGBoost model[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(12): 151-157.]
|
[109] |
付周, 邹恒斐, 袁景淇. 基于XGBoost的小型循环流化床锅炉吹灰方案优化[J]. 控制工程, 2025, 32(5): 891-896.
|
|
[FU Z, ZOU H F, YUAN J Q. Optimization of soot blowing scheme for small circulating fluidized bed boilers based on XGBoost[J]. Control Engineering, 2025, 32(5): 891-896]
|
[110] |
杨金路. 基于机器学习的页岩组成研究[D]. 青岛: 中国免费靠逼视频(华东), 2022.
|
|
[YANG J L. Research on shale composition based on machine learning[D]. Qingdao: China University of Petroleum (East China), 2022.]
|
[111] |
ZHU M, PENG H, LIANG M, et al. RC-XGBoost-based mechanical parameters back analysis of rock mass in heavily fractured tunnel: A case in Yunnan, China[J]. Rock Mechanics and Rock Engineering, 2024, 57(4): 2997-3019.
|
[112] |
ACAR M C, KAYA B. Models to estimate the elastic modulus of weak rocks based on least square support vector machine[J]. Arabian Journal of Geosciences, 2020, 13(14): 590.
|
[113] |
路研, 刘宗宾, 李超, 等. 基于F-score协同支持向量机算法的孔隙结构类别测井识别[J]. 中国免费靠逼视频学报(自然科学版), 2024, 48(6): 37-47.
|
|
[LU Y, LIU Z B, LI C, et al. Logging identification of pore structure categories based on F-score cooperative support vector machine algorithm[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(6): 37-47.]
|
[114] |
CEMILOGLU A, ZHU L, ARSLAN S, et al. Support vector machine (SVM) application for uniaxial compression strength (UCS) prediction: A case study for Maragheh limestone[J]. Applied Sciences, 2023, 13(4): 2217.
|
[115] |
SYED F I, ALSHAMAI A, DAHAGHI A K, et al. Application of ML & AI to model petrophysical and geomechanical properties of shale reservoirs-A systematic literature review[J]. Petroleum, 2022, 8(2): 158-166.
|
[116] |
CERYAN N. Application of support vector machines and relevance vector machines in predicting uniaxial compressive strength of volcanic rocks[J]. Journal of African Earth Sciences, 2014, 100: 634-644.
|
[117] |
王小琼, 钟毅, 万有余, 等. 纹层对页岩力学性质的影响及其对水力压裂的启示[J]. 中国免费靠逼视频学报(自然科学版), 2025, 49(1): 92-100.
|
|
[WANG X Q, ZHONG Y, WAN Y Y, et al. Influence of laminations on the mechanical properties of shale and its implications for hydraulic fracturing[J]. Journal of China University of Petroleum (Edition of Natural Science), 2025, 49 (1): 92-100.]
|
[118] |
边会媛, 臧鑫, 张迪, 等. 应力效应下页岩动静态弹性各向异性特征[J]. 物探与化探, 2024, 48(6): 1664-1673.
|
|
[BIAN H Y, ZANG X, ZHANG D, et al. Dynamic and static elastic anisotropic characteristics of shale under stress effect[J]. Geophysical and Geochemical Exploration, 2024, 48 (6): 1664-1673.]
|
[119] |
刘卫华, 王洋, 陈祖庆, 等. 侏罗系陆相页岩各向异性动静态弹性参数建模[J]. 地球物理学报, 2025, 68(1): 213-228.
|
|
[LIU W H, WANG Y, CHEN Z Q, et al. Modeling of anisotropic dynamic and static elastic parameters of continental shales in the Jurassic[J]. Chinese Journal of Geophysics, 2025, 68 (1): 213-228.]
|
[120] |
XI Z, TANG S, ZHANG S, et al. Evaluation of mechanical properties of porous media materials based on deep learning: Insights from pore structure[J]. Fuel, 2024, 371: 131923.
|
[121] |
LEE J, LUMLEY D E. Interpreting the effects of shale rock properties on seismic anisotropy by statistical and machine learning methods[J]. Geoenergy Science and Engineering, 2023, 224: 211631.
|
[122] |
IRAJI S, SOLTANMOHAMMADI R, MATHEUS G F, et al. Application of unsupervised learning and deep learning for rock type prediction and petrophysical characterization using multi-scale data[J]. Geoenergy Science and Engineering, 2023, 230: 212241.
|
[123] |
NABIPOUR I, MOHAMMADZADEH-SHIRAZI M, RAOOF A, et al. A data-driven approach for efficient prediction of permeability of porous rocks by combining multiscale imaging and machine learning[J]. Transport in Porous Media, 2025, 152(4): 1-34.
|
[124] |
ZHAO X, JIN F, LIU X, et al. Numerical study of fracture dynamics in different shale fabric facies by integrating machine learning and 3-D lattice method: A case from Cangdong Sag, Bohai Bay Basin, China[J]. Journal of Petroleum Science and Engineering, 2022, 218: 110861.
|
[125] |
潘妮, 赵迪斐, 魏源, 等. 渝西地区龙马溪组深层页岩矿物特征及其储层地质意义[J]. 非常规油气, 2022, 9(2): 8-14+33.
|
|
[PAN N, ZHAO D F, WEI Y, et al. Mineral characteristics of deep shale in the Longmaxi Formation in western Chongqing and their geological significance for reservoirs[J]. Unconventional Oil & Gas, 2022, 9(2): 8-14+33.]
|
[126] |
徐亮, 吴伟, 殷樱子, 等. 过成熟海相页岩有机质演化及孔隙结构响应—来自模拟实验的证据[J]. 天然气地球科学, 2025, 36(1): 42-56.
doi: 10.11764/j.issn.1672-1926.2024.06.005
|
|
[XU L, WU W, YIN Y Z, et al. Organic matter evolution and pore structure response of overmature marine shale: Evidence from simulation experiments[J]. Natural Gas Geoscience, 2025, 36(1): 42-56.]
|
[127] |
张培先, 高全芳, 何希鹏, 等. 南川地区龙马溪组页岩气地应力场特征及对产量影响分析[J]. 油气地质与采收率, 2023, 30(4): 55-65.
|
|
[ZHANG P X, GAO Q F, HE X P, et al. Characteristics of the in-situ stress field of shale gas in the Longmaxi Formation in Nanchuan area and analysis of its impact on production[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(4): 55-65.]
|
[128] |
LAWAL A I, KWON S. Application of artificial intelligence to rock mechanics: An overview[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(1): 248-266.
|
[129] |
林魂, 孙新毅, 宋西翔, 等. 基于改进人工神经网络的页岩气井产量预测模型研究[J]. 油气藏评价与开发, 2023, 13(4): 467-473.
|
|
[LIN H, SUN X Y, SONG X X, et al. Research on the prediction model of shale gas well production based on the improved artificial neural network[J]. Reservoir Evaluation and Development, 2023, 13(4): 467-473.]
|
[130] |
徐成桂, 徐广顺. 基于模糊数学理论的高维小样本数据特征分类系统[J]. 现代电子技术, 2022, 45(23): 166-170.
|
|
[XU C G, XU G S. Feature classification system for high-dimensional small-sample data based on fuzzy mathematics theory[J]. Modern Electronics Technique, 2022, 45(23): 166-170.]
|
[131] |
李化东. 深度图卷积网络的过平滑及过拟合问题研究[D]. 哈尔滨: 黑龙江大学, 2024.
|
|
[LI H D. Research on the oversmoothing and overfitting problems of deep graph convolutional networks[D]. Harbin: Heilongjiang University, 2024.]
|
[132] |
王天奥. 参数和数据视角下缓解元学习过拟合的方法研究[D]. 长春: 吉林大学, 2024.
|
|
[WANG T N. Research on methods to alleviate overfitting in meta-learning from the perspectives of parameters and data[D]. Changchun: Jilin University, 2024.]
|
[133] |
岳小磊, 岳中文, 马文彪, 等. 基于数字钻进的层状岩体界面及岩石强度识别试验研究[J]. 采矿与安全工程学报, 2025, 42(2): 440-451.
|
|
[YUE X L, YUE Z W, MA W B, et al. Experimental research on interface and rock strength identification of layered rock masses based on digital drilling[J]. Journal of Mining & Safety Engineering, 2025, 42(2): 440-451.]
|
[134] |
WANG Q, HU Q, NING X, et al. Spatial heterogeneity analyses of pore structure and mineral composition of Barnett shale using X-ray scattering techniques[J]. Marine and Petroleum Geology, 2021, 134: 105354.
|
[135] |
谢国梁, 焦堃, 刘瑞崟, 等. 四川盆地及周缘筇竹寺组与五峰组-龙马溪组页岩孔隙结构对比[J]. 成都理工大学学报(自然科学版), 2024, 51(5): 813-832.
|
|
[XIE G L, JIAO K, LIU R Y, et al. Comparison of shale pore structure between the Qiongzhusi Formation and the Wufeng Formation-Longmaxi Formation in the Sichuan Basin and its periphery[J]. Journal of Chengdu University of Technology (Natural Science Edition), 2024, 51(5): 813-832.]
|
[136] |
程世忠, 盛茂, 任乐佳, 等. 储层温度对页岩微观力学性质的影响[J]. 钻采工艺, 2024, 47(1): 73-79.
doi: 10.3969/J.ISSN.1006-768X.2024.01.09
|
|
[CHENG S Z, SHENG M, REN L J, et al. Influence of reservoir temperature on the microscopic mechanical properties of shale[J]. Drilling & Production Technology, 2024, 47 (1): 73-79.]
|
[137] |
邹才能, 穆英, 潘松圻, 等. 流固耦合作用对地下储氢库储盖层岩石微观力学性质的影响[J]. 天然气与石油, 2024, 42(5): 106-113+6.
|
|
[ZOU C N, MU Y, PAN S Q, et al. Influence of fluid-solid coupling on the microscopic mechanical properties of rock in the storage and caprock layers of underground hydrogen storage facilities[J]. Natural Gas and Oil, 2024, 42 (5): 106-113+6.]
|
[138] |
王团, 赵海波, 李奎周, 等. 一种考虑复杂孔隙结构的泥页岩地震岩石物理模型[J]. 中国免费靠逼视频学报(自然科学版), 2019, 43(3): 45-55.
|
|
[WANG T, ZHAO H B, LI K Z, et al. A seismic rock physics model of mud shale considering complex pore structures[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43 (3): 45-55.]
|
[139] |
KASYAP S S, SENETAKIS K. Characterization of two types of shale rocks from Guizhou China through micro-indentation, statistical and machine-learning tools[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109304.
|
[140] |
YU H, LEBEDEV M, ZHOU J, et al. The rock mechanical properties of lacustrine shales: Argillaceous shales versus silty laminae shales[J]. Marine and Petroleum Geology, 2022, 141: 105707.
|
[141] |
孙歧峰, 倪虹升, 岳喜洲, 等. 基于深度残差网络的随钻方位电磁波电阻率测井反演方法[J]. 石油钻探技术, 2024, 52(5): 97-104.
|
|
[SUN Q F, NI H S, YUE X Z, et al. Inversion method of azimuthal electromagnetic wave resistivity logging while drilling based on deep residual network[J]. Petroleum Drilling Techniques, 2024, 52(5): 97-104.]
|
[142] |
郭培峰, 邓虎成, 邓勇, 等. 鄂尔多斯盆地南缘长8储层岩石力学特征及影响因素[J]. 科学技术与工程, 2019, 19(18): 189-198.
|
|
[GUO P F, DENG H C, DENG Y, et al. Rock mechanical characteristics and influencing factors of Chang 8 reservoir in the southern margin of Ordos Basin[J]. Science Technology and Engineering, 2019, 19(18): 189-198.]
|
[143] |
张鹏飞, 刘金华, 孟涛, 等. 断陷盆地复杂断裂区古构造恢复——以渤海湾盆地济阳坳陷渤南洼陷沙四下亚段为例[J]. 天然气地球科学, 2024, 35(11): 1973-1982.
doi: 10.11764/j.issn.1672-1926.2024.04.017
|
|
[ZHANG P F, LIU J H, MENG T, et al. Restoration of paleo-structure in the complex fault zone of rift basin: Taking the lower sub-member of the fourth member of Shahejie Formation in Bonan Sag, Jiyang Depression, Bohai Bay Basin as an example[J]. Natural Gas Geoscience, 2024, 35(11): 1973-1982.]
|
[144] |
吴迪, 文武, 门哲, 等. 基于扩散模型的地震数据随机噪声压制方法[J]. 石油地球物理勘探, 2024, 59(6): 1252-1259.
|
|
[WU D, WEN W, MEN Z, et al. Random noise suppression method for seismic data based on diffusion model[J]. Oil Geophysical Prospecting, 2024, 59(6): 1252-1259.]
|
[145] |
解馨慧, 邓虎成, 胡蓝霄, 等. 湖相细粒沉积岩颗粒微观力学特征及类型划分——以鄂尔多斯盆地上三叠统延长组7段页岩为例[J]. 石油与天然气地质, 2024, 45(4): 1079-1088.
|
|
[XIE X H, DENG H C, HU L X, et al. Microscopic mechanical characteristics and type classification of lacustrine fine-grained sedimentary rocks: Taking the shale of the 7th member of the Upper Triassic Yanchang Formation in Ordos Basin as an example[J]. Oil & Gas Geology, 2024, 45(4): 1079-1088.]
|
[146] |
曾宏斌, 王芙蓉, 罗京, 等. 基于低温氮气吸附和高压压汞表征潜江凹陷盐间页岩油储层孔隙结构特征[J]. 地质科技通报, 2021, 40(5): 242-252.
|
|
[ZENG H B, WANG F R, LUO J, et al. Characterization of Pore structure characteristics of inter-salt shale oil reservoirs in Qianjiang Sag based on low-temperature nitrogen adsorption and high-pressure mercury injection[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 242-252.]
|
[147] |
程金芮, 金瑾, 张朝龙, 等. 自适应策略优化的粒子群优化算法在神经网络架构搜索中的应用[J]. 计算机应用, 2024, 44(S1): 60-64.
|
|
[CHENG J R, JIN J, ZHANG C L, et al. Application of particle swarm optimization algorithm optimized by adaptive strategy in neural network architecture search[J]. Journal of Computer Applications, 2024, 44(S1): 60-64.]
|
[148] |
MIAH M I, AHMED S, ZENDEHBOUDI S, et al. Machine learning approach to model rock strength: Prediction and variable selection with aid of log data[J]. Rock Mechanics and Rock Engineering, 2020, 53: 4691-4715.
|
[149] |
MAHMOODZADEH A, MOHAMMADI M, GHAFOOR S, et al. Machine learning techniques to predict rock strength parameters[J]. Rock Mechanics and Rock Engineering, 2022, 55(3): 1721-1741.
|
[150] |
WEI M, MENG W, DAI F, et al. Application of machine learning in predicting the rate-dependent compressive strength of rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(5): 1356-1365.
|
[151] |
ZHOU S, ZHANG Z X, LUO X, et al. Predicting dynamic compressive strength of frozen-thawed rocks by characteristic impedance and data-driven methods[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2024, 16(7): 2591-2606.
|
[152] |
郝建, 刘河清, 刘建康, 等. 基于振动信号的岩石单轴抗压强度钻进预测实验研究[J]. 岩石力学与工程学报, 2024, 43(6): 1406-1424.
|
|
[HAO J, LIU H Q, LIU J K, et al. Experimental study on drilling prediction of uniaxial compressive strength of rock based on vibration signals[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(6): 1406-1424.]
|
[153] |
唐俊方, 熊健, 刘向君, 等. 玛湖凹陷风城组岩石力学参数自适应权重组合预测[J]. 石油地球物理勘探, 2024, 59(1): 1-11.
|
|
[TANG J F, XIONG J, LIU X J, et al. Adaptive weight combination prediction of rock mechanical parameters of Fengcheng Formation in Mahu Sag[J]. Oil Geophysical Prospecting, 2024, 59(1): 1-11.]
|
[154] |
周济民, 张海晨, 王沫然. 基于物理经验模型约束的机器学习方法在页岩油产量预测中的应用[J]. 应用数学和力学, 2021, 42(9): 881-890.
|
|
[ZHOU J M, ZHANG H C, WANG M R. Application of machine learning method constrained by physical empirical model in shale oil production prediction[J]. Applied Mathematics and Mechanics, 2021, 42(9): 881-890.]
|
[155] |
姚军, 王萌, 樊冬艳, 等. 考虑层理缝岩性差异的页岩油藏压裂水平井动态分析方法[J]. 中国免费靠逼视频学报(自然科学版), 2024, 48(5): 91-102.
|
|
[YAO J, WANG M, FAN D Y, et al. Dynamic analysis method for fractured horizontal wells in shale oil reservoirs considering lithological differences of bedding fractures[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(5): 91-102.]
|