[1] |
DU S Y, ZHAO X G, XIE C Y, et al. Data-driven production optimization using particle swarm algorithm based on the ensemble-learning proxy model[J]. Petroleum Science, 2023, 20(5): 2951-2966.
|
[2] |
李荣光, 金龙, 孙伶, 等. 时间序列统计法预测中国石油石化领域大数据算法发展趋势[J]. 石油钻采工艺, 2024: 1-17.
|
|
[LI R G, JIN L, SUN L, et al. Forecasting trends in big data algorithms for China’s petroleum and petrochemical sector: a time series statistical approach[J]. Oil Drilling & Production Technology, 2024: 1-17.]
|
[3] |
张蕾, 窦宏恩, 王天智, 等. 基于集成时域卷积神经网络模型的水驱油田单井产量预测方法[J]. 石油勘探与开发, 2022, 49(5): 996-1004.
doi: 10.11698/PED.20210825
|
|
[ZHANG L, DOU H E, WANG T Z, et al. A novel integrated temporal convolutional neural network model for predicting single-well production in waterflooded oilfields[J]. Petroleum Exploration and Development, 2022, 49(5): 996-1004.]
|
[4] |
ZHONG Z, SUN A Y, REN B, et al. A deep-learning-based approach for reservoir production forecast under uncertainty[J]. SPE Journal, 2021, 26(03): 1314-1340.
|
[5] |
LI X, MA X, XIAO F, et al. Small-sample production prediction of fractured wells using multitask learning[J]. SPE Journal, 2022, 27(3): 1504-1519.
|
[6] |
WANG L, YAO Y, LUO X, et al. A critical review on intelligent optimization algorithms and surrogate models for conventional and unconventional reservoir production optimization[J]. Fuel, 2023, 350: 128826.
|
[7] |
SAGHEER A, KOTB M. Time series forecasting of petroleum production using deep LSTM recurrent networks[J]. Neurocomputing, 2019, 323: 203-213.
|
[8] |
DU J, ZHENG J, LIANG Y, et al. A deep learning-based approach for predicting oil production: a case study in the United States[J]. Energy, 2024, 288: 129688.
|
[9] |
薛亮, 顾少华, 王嘉宝, 等. 基于粒子群优化和长短期记忆神经网络的气井生产动态预测[J]. 石油钻采工艺, 2021, 43(4): 525-531.
|
|
[XUE L, GU S H, WANG J B, et al. Dynamic production forecasting in gas wells using particle swarm optimization and long short-term memory neural networks[J]. Oil Drilling & Production Technology, 2021, 43(4): 525-531.]
|
[10] |
王娟, 梅启亮, 邹永玲, 等. 基于多参数时间序列及粒子群优化算法的油藏产量动态建模预测方法[J]. 石油钻采工艺, 2023, 45(2): 190-196.
|
|
[WANG J, MEI Q L, ZOU Y L, et al. Reservoir production dynamic modeling and prediction using multi-parameter time series and particle swarm optimization algorithms[J]. Oil Drilling & Production Technology, 2023, 45(2): 190-196.]
|
[11] |
林伯韬, 郭建成. 人工智能在石油工业中的应用现状探讨[J]. 石油科学通报, 2019, 4(4): 403-413.
|
|
[LIN B T, GUO J C. Discussion on current application of artificial intelligence in petroleum industry[J]. Petroleum Science Bulletin, 2019, 4(4): 403-413.]
|
[12] |
ZHUANG X, WANG W, SU Y, et al. Multi-objective optimization of reservoir development strategy with hybrid artificial intelligence method[J]. Expert Systems with Applications, 2024, 241: 122707.
|
[13] |
张雷, 杜立滨, 王聪, 等. 基于历史调控经验的强化学习油藏生产优化方法[J]. 科学技术与工程, 2024, 24(31): 13342-13350.
|
|
[ZHANG L, DU L B, WANG C, et al. A reinforcement learning-based reservoir production optimization method using historical control experience[J]. Science Technology and Engineering, 2024, 24(31): 13342-13350.]
|
[14] |
刘合, 李艳春, 贾德利, 等. 人工智能在注水开发方案精细化调整中的应用现状及展望[J]. 石油学报, 2023, 44(9): 1574-1586.
doi: 10.7623/syxb202309014
|
|
[LIU H, LI Y, JIA D, et al. Application status and prospects of artificial intelligence in fine-tuning water injection development plans[J]. Acta Petrolei Sinica, 2023, 44(9): 1574-1586.]
|
[15] |
匡立春, 刘合, 任义丽, 等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发, 2021, 48(1): 1-11.
doi: 10.11698/PED.2021.01.01
|
|
[KUANG L, LIU H, REN Y, et al. Application status and development trends of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1): 1-11.]
|
[16] |
李艳春, 贾德利, 王素玲, 等. 基于深度生成网络的时变井控下油藏动态预测代理模型[J]. 石油勘探与开发, 2024, 51(5): 1114-1125.
doi: 10.11698/PED.20240269
|
|
[LI Y, JIA D, WANG S, et al. A surrogate model for time-varying well control-based reservoir dynamic prediction using deep generative networks[J]. Petroleum Exploration and Development, 2024, 51(5): 1114-1125.]
|
[17] |
胡晓东, 涂志勇, 罗英浩, 等. 拟合函数—神经网络协同的页岩气井产能预测模型[J]. 石油科学通报, 2022, 7(3): 394-405.
|
|
[HU X, TU Z, LUO Y, et al. Shale gas well productivity prediction model with fitted function-neural network cooperation. Petroleum Science Bulletin, 2022, 7(3): 394-405.]
|
[18] |
ATTANASI E D, FREEMAN P A, COBURN T C. Well predictive performance of play-wide and subarea random forest models for Bakken productivity[J]. Journal of Petroleum Science and Engineering, 2020, 191: 107150.
|
[19] |
DONG Y, QIU L, LU C, et al. A data-driven model for predicting initial productivity of offshore directional well based on the physical constrained eXtreme gradient boosting (XGBoost) trees[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110176.
|
[20] |
RAJULA H S R, VERLATO G, MANCHIA M, et al. Comparison of conventional statistical methods with machine learning in medicine: diagnosis, drug development, and treatment[J]. Medicina, 2020, 56(9): 455.
|
[21] |
LEE K, LIM J, YOON D, et al. Prediction of shale-gas production at duvernay formation using deep-learning algorithm[J]. SPE Journal, 2019, 24(06): 2423-2437.
|
[22] |
TEMIZEL C, CANBAZ C H, SARACOGLU O, et al. Production forecasting in shale reservoirs using lstm method in deep learning[C]. 2020.
|
[23] |
WERNECK R de O, PRATES R, MOURA R, et al. Data-driven deep-learning forecasting for oil production and pressure[J]. Journal of Petroleum Science and Engineering, 2022, 210: 109937.
|
[24] |
AL-ALI Z A A H, HORNE R. Probabilistic well production forecasting in volve field using temporal fusion transformer deep learning models[C/OL]// Gas & Oil Technology Showcase and Conference. OnePetro, 2023[2024-01-11].
|
[25] |
樊冬艳, 杨灿, 孙海, 等. 基于时间序列相似性与机器学习方法的页岩气井产量预测[J]. 中国免费靠逼视频学报(自然科学版), 2024, 48(3): 119-126.
|
|
[FAN D Y, YANG C, SUN H, et al. Shale gas well production forecasting based on time series similarity and machine learning methods[J]. Journal of China University of Petroleum (Edition of Natural Science), 2024, 48(3): 119-126.]
|
[26] |
韩江峡, 薛亮, 位云生, 等. 基于深度自回归神经网络的多井产量概率预测[J]. 石油科学通报, 2024, 9(4): 679-689.
|
|
[HAN J X, XUE L, WEI Y S, et al. Multi-well production probability prediction based on deep autoregressive neural network[J]. Petroleum Science Bulletin, 2024, 9(4): 679-689.]
|
[27] |
HUANG H, GONG B, SUN W. A deep-learning-based graph neural network-long-short-term memory model for reservoir simulation and optimization with varying well controls[J]. SPE Journal, 2023, 28(6): 2898-2916.
|
[28] |
RAHMANIFARD H, GATES I. A Comprehensive review of data-driven approaches for forecasting production from unconventional reservoirs: best practices and future directions[J]. Artificial Intelligence Review, 2024, 57(8): 213.
doi: 10.1007/s10462-024-10865-5
pmid: 39050688
|
[29] |
SHERSTINSKY A. Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306.
|