中国科技核心期刊
(中国科技论文统计源期刊)
  Scopus收录期刊

石油科学通报 ›› 2025, Vol. 10 ›› Issue (5): 983-996. doi: 10.3969/j.issn.2096-1693.2025.03.019

• • 上一篇    下一篇

基于TPE优化的时空图神经网络油藏产量动态预测

张博维1,2(), 刘月田2,3,*(), 黄晋江2,3, 薛亮2,3, 宋来明4   

  1. 1 中国免费靠逼视频(北京)人工智能学院,北京 102249
    2 中国免费靠逼视频(北京)油气资源与工程全国重点实验室,北京 102249
    3 中国免费靠逼视频(北京)石油工程学院,北京 102249
    4 中海油研究总院有限责任公司,北京 100028
  • 收稿日期:2025-03-06 修回日期:2025-06-18 出版日期:2025-10-15 发布日期:2025-10-21
  • 通讯作者: *刘月田(1965年—),博士,教授,主要从事渗流力学与油藏开发、油藏模拟与人工智能、裂缝性油藏渗流与开发方面的研究,lyt51@163.com
  • 作者简介:张博维(2000年—),博士研究生,主要研究方向为人工智能在油气田开发中的应用研究,15304381793@163.com
  • 基金资助:
    中国海洋石油有限公司联合研究院科技项目“基于流场适配性的砂岩油藏开发动态智能分析与评价方法”(CL2O22RCPS2018XNN)

Reservoir production dynamics prediction using TPE-optimized spatio-temporal graph neural networks

ZHANG Bowei1,2(), LIU Yuetian2,3,*(), HUANG Jinjiang2,3, XUE Liang2,3, SONG Laiming4   

  1. 1 College of Artificial Intelligence, China University of Petroleum, Beijing 102249, China
    2 State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum,Beijing 102249, China
    3 College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China
    4 CNOOC Research Institute, Beijing 100028, China
  • Received:2025-03-06 Revised:2025-06-18 Online:2025-10-15 Published:2025-10-21
  • Contact: *lyt51@163.com

摘要:

油田开发过程中,准确的产量动态预测可以为油田生产措施调整、开发决策优化提供重要帮助。地下井网系统复杂的空间结构和动态随机的时变特征影响产量动态预测方法对注采井时空关系的有效学习,同时现有预测方法未能考虑多参数跨时间步的时空响应关系,导致井组多生产动态时序特征提取和关联分析存在局限性,制约产量预测精度的提升。本文考虑多节点多生产动态时序特征,建立时空图神经网络多井产量动态预测方法及基于树结构的贝叶斯算法的模型参数优化策略,有效聚合邻近节点多元信息,提高油藏产量预测精度和鲁棒性。该模型利用某海上水驱油藏生产数据验证。结果表明,优化后的模型精度较高,具有较好的产量趋势及置信区间预测;通过对比实验证明该模型可以有效实现多生产动态信息利用,提高预测精度,预测精度相较前人方法均方误差降低23.67%~56.96%,分位数损失函数降低18.31%~59.58%。研究成果可用于水驱油藏产量动态预测,为油藏生产决策提供可靠支持。

关键词: 产量预测, 多井预测, 时空图神经网络, 时空图建模, TPE优化策略, 概率预测

Abstract:

In the process of oilfield development, accurate production performance prediction can provide crucial support for adjusting production measures and optimizing development strategies. The complex spatial structure of underground well networks and the dynamic stochastic time-varying characteristics hinder the effective learning of spatiotemporal relationships between injection and production wells in existing prediction methods. Furthermore, current approaches fail to account for the cross-time-step spatiotemporal response relationships among multiple parameters, resulting in limitations in extracting temporal features and conducting correlation analysis of multi-well production performance sequences. These constraints ultimately restrict the improvement of production prediction accuracy. This study proposes a spatiotemporal graph neural network-based multi-well production forecasting method, incorporating a Tree-structured Parzen Estimator (TPE)-driven model parameter optimization strategy. The approach effectively aggregates multivariate information from neighboring nodes, enhancing reservoir production prediction accuracy and robustness. The model is validated using production data from an offshore waterflood reservoir. Results demonstrate that the optimized model achieves high accuracy, with improved production trend and confidence interval predictions. Comparative experiments confirm the model’s effectiveness in leveraging multi-dynamic information, significantly improving prediction accuracy. Specifically, the mean squared error is reduced by 23.67%~56.96%, and the quantile loss function decreases by 18.31%~59.58% compared to existing methods. The proposed framework provides reliable support for waterflood reservoir production forecasting and decision-making.

Key words: production prediction, multi-well Prediction, spatio-temporal graph neural networks, spatio-temporal graph modeling, TPE optimization strategy, probabilistic forecasting

中图分类号: