[1] |
彭靖淞, 韦阿娟, 孙哲, 等. 张家口-蓬莱断裂渤海沙垒田凸起东北段盆岭再造及其对油气成藏的影响[J]. 石油勘探与开发, 2018, 45(2): 200-211.
doi: 10.11698/PED.2018.02.03
|
|
[PENG J S, WEI A J, SUN Z, et al. Sinistral strike slip of the Zhangjiakou-Penglai Fault and its control on hydrocarbon accumulation in the northeast of Shaleitian Bulge, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2018, 45(2): 200-211.]
doi: 10.11698/PED.2018.02.03
|
[2] |
姜福杰, 邵新荷, 李林涛, 等. 断裂调整型致密砂岩气藏成藏过程模拟与成藏模式[J]. 石油科学通报, 2021, 6(4): 539-552.
|
|
[JIANG F J, SHAO X H, LI L T, et al. Accumulation process simulation and an accumulation model of a fault-adjusted tight sandstone gas reservoir[J]. Petroleum Science Bulletin, 2021, 6(4): 539-552.]
|
[3] |
LI C, XU G, XU F, et al. A model for faults to link the Neogene reservoirs to the Paleogene organic-rich sediments in low-relief regions of the south Bohai Sea, China[J]. Journal of Petroleum Science and Engineering, 2021, 200: 108360.
|
[4] |
常少英, 庄锡进, 邓兴梁, 等. 断溶体油藏离效井预测方法与应用效果——以HLHT油田奥陶系潜山区为例[J]. 石油地球物理勘探, 2017, 52(s1): 199-206.
|
|
[CHANG S Y, ZHUANG X J, DENG X L, et al. Fault-karst carbonate reservoir prediction: A case study in Ordovician buried hills, HLHT Oilfield[J]. Oil Geophysical Prospecting, 2017, 52(s1): 199-206.]
|
[5] |
刘建军, 汪桂敏, 于腾飞, 等. 顺北油气田断溶体油藏产量预测模型研究及应用[J]. 复杂油气藏, 2024, 17(3): 329-334.
|
|
[LIU J J, WANG G M, YU T F, et al. Research and application of a production forecast model for fault-karst reservoirs: A case study of the Shunbei oil and gas field[J]. Complex Hydrocarbon Reservoirs, 2024, 17(3): 329-334.]
|
[6] |
TENG C Y, CAI Z X, et al. Structural geometry and evolution of an intracratonic strike-slip fault zone: A case study from the north SB5 fault zone in the Tarim Basin, China[J]. Journal of Structural Geology, 2020, 140: 104159.
|
[7] |
PEIKERT E W. Interactive computer graphics and the fault problem[J]. AAPG Bulletin, 1970, 54(3): 556-557.
|
[8] |
BANKS R B. Interactive computer modeling of complex multizone faulted reservoirs using both seismic and well data[C]. SEG Technical Program Expanded Abstracts, Dallas, 1982.
|
[9] |
JACQUEMIN P, MALLET J. Automatic faults extraction using double houghtransform[C]. SEG Technical Program Expanded Abstracts, Houston, 2005.
|
[10] |
ADMASU F, BACK S, TOENNIES K. Autotracking of faults on 3D seismic data[J]. Geophysics, 2006, 71(6): A49-A53.
|
[11] |
CHOPRA S, MARFURT K. Seismic attributes for prospect identification and reservoir characterization[M]. San Antonio: Society of Exploration Geophysicists, 2007.
|
[12] |
WU X. Directional structure-tensor-based coherence to detect seismic faults and channels[J]. Geophysics, 2017, 82(2): A13-A17.
|
[13] |
ZHAO T, YUE Y, CHEN T, et al. 3D seismic attribute conditioning using multiscale sheet enhancing filtering[J]. Remote Sensing, 2025, 17(2): 278.
|
[14] |
KARIMI P, FOMEL S, WOOD L, et al. Predictive coherence[J]. Interpretation, 2015, 3(4): SAE1-SAE7.
|
[15] |
LI F, HUANG Y, QI X. Recognition of small faults in coal fields based on multi-scale seismic curvature attributes fusion[J]. Heliyon, 2023, 9(11): e22630.
|
[16] |
GAO D. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications[J]. Geophysics, 2013, 78(2): 21-31.
|
[17] |
DI H, GAO D. Efficient volumetric extraction of most positive/negative curvature and flexure for fracture characterization from 3d seismic data[J]. Geophysical Prospecting, 2016, 64(6): 1454-1468.
|
[18] |
PEDERSEN S I, RANDEN T, SONNELAND L, et al. Automatic fault extraction using artificial ants[C]. SEG Technical Program Expanded Abstracts, Salt Lake City, 2002.
|
[19] |
李宁, 李瑞磊, 苗贺, 等. 松辽盆地深层中-基性火山岩有利相带及储层”甜点”逐级识别[J]. 石油与天然气地质, 2024, 45(3): 801-815.
|
|
[LI N, LI R L, MIAO H, et al. Stepwise identification of favorable facies belts and reservoir sweet spots of deep intermediate-basic volcanic rocks in the Songliao Basin[J]. Oil & Gas Geology, 2024, 45(3): 801-815.]
|
[20] |
MILLER P, DASGUPTA S, SHELANDER D. Seismic imaging of migration pathways by advanced attribute analysis, Alaminos Canyon 21, Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 111-118.
|
[21] |
HALE D. Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3D seismic images[J]. Geophysics, 2013, 78(2): O33-O43.
|
[22] |
甄宗玉, 陈华靖, 张鹏志, 等. 基于特定反射系数压制与最大似然属性的断层识别方法[J]. 断块油气田, 2021, 28(3): 335-339.
|
|
[ZHEN Z Y, CHEN H J, ZHANG P Z, et al. The fault identification method based on specific reflection coefficient suppression and maximum likelihood attribute[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 335-339.]
|
[23] |
BAI K, XU H, SHE X. Sobel edge detection and its application in LMD-based seismic fault detection[J]. Journal of Seismic Exploration, 2018, 27(6): 531-542.
|
[24] |
刘乃豪, 李时桢, 黄腾, 等. 改进的整体嵌套边缘检测地震断层识别技术[J]. 石油地球物理勘探, 2022, 57(3): 499-509.
|
|
[LIU N H, LI S Z, HUANG T, et al. Seismic fault interpretation based on improved holistically-nested edge detection[J]. Oil Geophysical Prospecting, 2022, 57(3): 499-509.]
|
[25] |
邹雅铭, 刘道理, 黄媛, 等. 叠后多属性在潜山断裂系统描述中的应用研究[J]. 石油科学通报, 2023, 8(6): 725-737.
|
|
[ZOU Y M, LIU D L, HUANG Y, et al. Application of post-stack multi-attributes in the description of sub-merged mountain fault and fracture development[J]. Petroleum Science Bulletin, 2023, 8(6): 725-737.]
|
[26] |
GUITTON A. 3D convolutional neural networks for fault interpretation[C]. 80th EAGE Conference and Exhibition, Copenhagen, 2018.
|
[27] |
王尚旭, 袁三一. 人工智能地球物理勘探[M]. 北京: 科学出版社, 2025.
|
|
[WANG S X, YUAN S Y. Artificial intelligence in geophysical exploration[M]. Beijing: Science Press, 2025.]
|
[28] |
WU X, LIANG L, SHI Y, et al. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation[J]. Geophysics, 2019, 84(3): IM35-IM45.
|
[29] |
FENG R, GRANA D, BALLING N. Uncertainty quantification in fault detection using convolutional neural networks[J]. Geophysics, 2021, 86(3): M41-M48.
|
[30] |
WU J, LIU B, ZHANG H, et al. Fault detection based on fully convolutional networks (FCN)[J]. Journal of Marine Science and Engineering, 2021, 9(3): 259.
|
[31] |
YANG D, CAI Y, HU G, et al. Seismic fault detection based on 3D Unet++ model[C]. SEG International Exposition and Annual Meeting, Denver, 2020.
|
[32] |
LIU N H, HE T, TIAN Y, et al. Common-azimuth seismic data fault analysis using residual Unet[J]. Interpretation, 2020, 8(3): SM25-SM37.
|
[33] |
GAO K, HUANG L J, ZHENG Y C. Fault detection on seismic structural images using a nested residual U-Net[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4502215.
|
[34] |
YU T, WANG X, CHEN J, et al. Fault recognition method based on attention mechanism and the 3D-Unet[J]. Computational Intelligence and Neuroscience, 2022, 2022: 9856669.
|
[35] |
VASWANI A, SHAZEER N M, PARMAR N, et al. Attention is all you need[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, 2017.
|
[36] |
PARMAR N, VASWANI A, USZKOREIT J, et al. Image transformer[C]. Proceedings of the 35th International Conference on Machine Learning, Stockholm, 2018.
|
[37] |
CHILD R, GRAY S, RADFORD A, et al. Generating long sequences with sparse transformers[J/OL]. arXiv e-prints, 2019, arXiv:1904.10509, http://arxiv.org/abs/1904.10509.
URL
|
[38] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words:Transformers for image recognition at scale[J/OL]. arXiv e-prints, 2020, arXiv:2010.11929, http://arxiv.org/abs/2010.11929.
URL
|
[39] |
CHEN J, LU Y, YU Q, et al. TransUnet: Transformers make strong encoders for medical image segmentation[J/OL]. arXiv e-prints, 2021, arXiv:2102.04306, http://arxiv.org/abs/2102.04306.
URL
|
[40] |
TANG Z, WU B, WU W, et al. Fault detection via 2.5D transformer U-Net with seismic data pre-processing[J]. Remote Sensing, 2023, 15(4): 1039.
|
[41] |
WANG S H, SI X, CAI Z X, et al. Fast global self-attention for seismic image fault identification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5922111.
|
[42] |
WU X, D HALE. 3D seismic image processing for faults[J]. Geophysics, 2016, 81(2): IM1-IM11.
|
[43] |
陈利新, 王胜雷, 姜振学, 等. 哈拉哈塘油田塔河北区块奥陶系断裂发育特征及断控区储层类型与分布预测[J]. 石油科学通报, 2024, 9(3): 408-421.
|
|
[CHEN L X, WANG S L, JIANG Z X, et al. Fault characteristics reservoir types and distribution prediction in a fault-controlled area in the Ordovician strata of the Tahebei Block, Halahatang Oilfield[J]. Petroleum Science Bulletin, 2024, 9(3): 408-421.]
|