[1] |
杨迎新, 高翔, 陈红, 等. PDC钻头岩石可钻性测定与分级新方法研究[J]. 地下空间与工程学报, 2019, 15(3): 811-819.
|
|
[YANG Y X, GAO X, CHEN H, et al. A new method for measuring and grading of PDC bit rock drillability[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(3): 811-819.]
|
[2] |
国家能源局. 石油天然气钻井工程岩石可钻性测定与分级(SY/T 5426-2016)[S]. 北京, 2016.
|
|
[National Energy Administration. The rock drillability testing and grading method for oil and gas well drilling engineering (SY/T 5426-2016)[S]. Beijing, 2016.]
|
[3] |
邹德永, 程远万, 刘洪祺. 岩屑声波法评价岩石可钻性的试验研究[J]. 岩石力学与工程学报, 2004, 23(14): 2439-2443.
|
|
[ZOU D Y, CHENG Y W, LIU H Q. Testing study on rock drillability evaluation[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(14): 2439-2443.]
|
[4] |
杨进, 高德利, 郑权方, 等. 岩石声波时差与岩石可钻性的关系及其应用[J]. 钻采工艺, 1998, 21(2): 1-3.
|
|
[YANG J, GAO D L, DENG Q F, et al. Research on relation between rock sonic interval transit time and rock drillability and its application[J]. Drilling & Production Technology, 1998, 21(2): 1-3.]
|
[5] |
李奋强, 栗琼玉, 刘素平, 等. 长沙盆地红层岩石地层可钻性研究及应用[J]. 钻探工程, 2024, 51(1): 51-57.
|
|
[LI F Q, SU Q Y, LIU S P, et al. Research and application on drillability of red strata in Changsha Basin[J]. Drilling Engineering, 2024, 51(1): 51-57.]
|
[6] |
王少锋, 吴毓萌, 蔡鑫, 等. 基于随钻参数的岩石强度预测与可钻性识别[J]. 中南大学学报(英文版), 2023, 30(12): 4036-4051.
|
|
[WANG S F, WU Y M, CAI X, et al. Strength prediction and drillability identification for rock based on measurement while drilling parameters[J]. Journal of Central South University, 2023, 30(12): 4036-4051.]
|
[7] |
JORDEN J R, SHIRLEY O J. Application of drilling performance data to overpressure detection[J]. Journal of Petroleum Technology, 1966, 18(11): 1387-1394.
|
[8] |
TEALE R. The concept of specific energy in rock drilling[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1965, 2(1): 57-73.
|
[9] |
陈韬, 张幼振, 钟自成. 基于钻孔钻进过程数据驱动的地层可钻性预测方法[J]. 煤炭工程, 2025, 57(5): 156-162.
doi: 10. 11799/ ce202505021
|
|
[CHEN T, ZHANG Y Z, ZHONG Z C. Prediction method of formation drillability based on drilling process data driving[J]. Coal Engineering, 2025, 57(5): 156-162.]
doi: 10. 11799/ ce202505021
|
[10] |
路保平, 张传进, 鲍洪志. 利用多测井参数求取岩石可钻性[J]. 石油钻探技术, 1998, 26(3): 6-8.
|
|
[LU B P, ZHANG C J, BAO H Z. Using multiple logging parameters to determine rock drillability[J]. Petroleum Drilling Techniques, 1998, 26(3): 6-8.]
|
[11] |
石祥超, 陈帅, 肖文强, 等. 砂岩地层可钻性预测方法: 微观结构与矿物组分模型[J]. 天然气工业, 2025, 45(4): 98-108.
|
|
[SHI X C, CHEN S, XIAO W Q, et al. Sandstone drillability prediction method: Microstructure and mineral composition model[J]. Natural Gas Industry, 2025, 45(4): 98-108.]
|
[12] |
范翔宇, 夏宏泉, 郑雷清, 等. 基于地震资料的钻速预测研究[J]. 大庆石油地质与开发, 2007, 26(5): 121-124.
|
|
[FAN X Y, XIA H Q, ZHENG L Q, et al. Prediction to drilling rate based on seismic data[J]. Petroleum Geology & Oilfield Development in Daqing, 2007, 26(5): 121-124.]
|
[13] |
王培义, 王克雄, 翟应虎, 等. 利用地震资料预测地层岩石抗钻特性参数[J]. 石油钻采工艺, 2006, 28(3): 7-9.
|
|
[WANG P Y, WANG K X, ZHAI Y H, et al. Prediction formation anti-drillability parameters by seismic data[J]. Oil Drilling & Production Technology, 2006, 28(3): 7-9.]
|
[14] |
耿智, 樊洪海, 陈勉, 等. 区域三维空间岩石可钻性预测方法研究与应用[J]. 石油钻探技术, 2014, 42(5): 80-84.
|
|
[GENG Z, FAN H H, CHEN M, et al. Application and research on methods for 3D space rock drillability prediction[J]. Petroleum Drilling Techniques, 2014, 42(5): 80-84.]
|
[15] |
朱亮, 李晓明, 纪慧, 等. 基于SAE和LSTM神经网络的深部未钻地层可钻性预测方法[J]. 西安免费靠逼视频学报(自然科学版), 2025, 40(1): 39-46.
|
|
[ZHU L, LI X M, JI H, et al. Drillability prediction method for deep undrilled formation based on SAE and LSTM neural network[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2025, 40(1): 39-46.]
|
[16] |
刘向君, 宴建军, 罗平亚, 等. 利用测井资料评价岩石可钻性研究[J]. 天然气工业, 2005, 25(7): 69-71.
|
|
[LIU X J, YAN J J, LUO P Y, et al. Evaluation on rock drill ability by well logging data[J]. Natural Gas industry B, 2005, 25(7): 69-71.]
|
[17] |
王馨玥, 刘鑫, 王丹丹, 等. 基于WOA-BP神经网络的岩石可钻性预测[J]. 石油天然气学报, 2024, 46(2): 285-294.
|
|
[WANG X Y, LIU X, WANG D D, et al. Prediction of rock drillability based on WOA-BP neural network[J]. Journal of Oil and Gas Technology, 2024, 46(2): 285-294.]
|
[18] |
田龙, 朱智华, 王立伟, 等. 基于大数据和无监督聚类算法的岩石可钻性表征和预测方法[J]. 新疆石油天然气, 2024, 20(2): 29-36.
|
|
[TIAN L, ZHU Z H, WANG L W, et al. A rock drillability characterization method based on big data and unsupervised clustering algorithm[J]. Xinjiang Oil & Gas, 2024, 20(2): 29-36.]
|
[19] |
靳永红, 李双贵, 陈帅, 等. 顺北地区三维抗钻特性参数分布规律[J]. 深圳大学学报(理工版), 2025, 42(2): 154-162.
|
|
[JIN Y H, LI S G, CHEN S, et al. Distribution law of 3D anti-drilling characteristic parameters in Shunbei rock[J]. Journal og Shenzhen University(Science and engineering), 2025, 42(2): 154-162.]
|
[20] |
MA H. Formation drillability prediction based on multi-source information fusion[J]. Journal of Petroleum Science and Engineering, 2011, 79(2): 438-446.
|
[21] |
GAN C, CAO W H, LIU K Z, et al. Spatial estimation for 3D formation drillability field: A new modeling framework[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103628.
|
[22] |
杨明合, 翟应虎, 马元普. 利用有限元法绘制区域地层可钻性剖面[J]. 石油钻探技术, 2007, 35(5): 558-560.
|
|
[YANG M H, ZHAI Y H, MA Y P. Create formation drillability plane based on finite element method[J]. Petroleum Drilling Techniques, 2007, 35(5): 558-560.]
|
[23] |
GUO A H, LU P F, WANG D D, et al. Improving the resolution of poststack seismic data based on UNet+ GRU deep learning method[J]. Applied Geophysics, 2023, 20(2): 176-185.
|
[24] |
YUAN S Y, JIAO X Q, LUO Y N, et al. Double-scale supervised inversion with a data-driven forward model for low-frequency impedance recovery[J]. Geophysics, 2022, 87(2): R165-181.
|
[25] |
SANG W J, YUAN S Y, HAN H W, et al. Porosity prediction using semi-supervised learning with biased well log data for improving estimation accuracy and reducing prediction uncertainty[J]. Geophysical Journal International, 2023, 232(2): 940-957.
|
[26] |
李钦昭, 刘洋, 席念旭, 等. 基于互相关约束和CNN-GRU网络的井震自动标定[J]. 石油地球物理勘探, 2025, 60(3): 564-575.
|
|
[LI Q Z, LIU Y, XI N X, et al. Automatic seismic-well tie based on cross-correlation constraints and CNN-GRU network[J]. Oil Geophysics Prospecting, 2025, 60(3): 564-575.]
|
[27] |
郭天良, 宋强功, 郭淑文, 等. CNN-GRU模型在克里金插值中的应用[J]. 石油地球物理勘探, 2025, 60(1): 185-192.
|
|
[GUO T L, SONG Q G, GUO S W, et al. Application of CNN-GRU model in Kriging interpolation[J]. Oil Geophysics Prospecting, 2025, 60(1): 185-192.]
|
[28] |
ZHANG X, LU Y, JIN Y, et al. An adaptive physics-informed deep learning method for pore pressure prediction using seismic data[J]. Petroleum Science, 2024, 21(2): 885-901.
|
[29] |
尹继尧, 钟磊, 张吉辉, 等. 基于连续小波变换目标处理技术在储层预测中的应用[J]. 石油物探, 2016, 55(3): 433-440.
doi: 10.3969/j.issn.1000-1441.2016.03.014
|
|
[YIN J Y, ZHONG L, ZHANG J H, et al. Target processing by continuous wavalet transform coefficients applied to reservoir prediction[J]. Geophysical Prospecting for Petroleum, 2016, 55(3): 433-440.]
|
[30] |
REHM B, MCCLENDON R. Measurement of formation pressure from drilling data[C]. SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, 1971.
|
[31] |
CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J/OL]. ArXiv, 2014. http://arxiv.org/abs/1412.3555
URL
|
[32] |
ZHU X Y, LI K W, YANG Z X, et al. SwinInver: 3D data-driven seismic impedance inversion based on Swin Transformer and adversarial training[J]. Computers & Geosciences, 2025, 194: 105743.
|
[33] |
ZHANG J F, LIU Y, MA Y H, et al. Real-time lithology identification from drilling data with self & cross attention model and wavelet transform[J]. Geoenergy Science and Engineering, 2025, 244: 213427.
|