[1] |
孙福街. 中国海油勘探开发数据治理探索与实践[J]. 中国海上油气, 2024, 36(6): 169-176.
|
|
[SUN F J. Exploration and practice of exploration and development data governance in CNOOC[J]. China Offshore Oil Gas, 2024, 36(6): 169-176.]
|
[2] |
熊华平, 赵春宇, 刘万伟. 油气大模型发展方向及实施关键路径[J]. 大庆石油地质与开发, 2024, 43(3): 214-224. DOI: 10.19597/J.ISSN.1000-3754.202401052.
|
|
[XIONG H P, ZHAO C Y, LIU W W. Development directions and key implementation paths of large models in the oil and gas industry[J]. Daqing Petrol. Geol. Dev., 2024, 43(3): 214-224. DOI: 10.19597/J.ISSN.1000-3754.202401052.]
|
[3] |
肖莉. 基于区块链的石油钻井众包知识管理系统设计与实现[D]. 西安: 西安免费靠逼视频, 2024. DOI: 10.27400/d.cnki.gxasc.2024.000352.
|
|
[XIAO L. Design and implementation of a crowdsourcing knowledge management system for oil drilling based on blockchain technology[D]. Xi’an: Xi’an Shiyou Univ., 2024. DOI: 10.27400/d.cnki.gxasc.2024.000352.]
|
[4] |
和婷婷, 张强. 知识图谱在油气勘探开发中的应用现状与发展趋势[J]. 天然气工业, 2024, 44(9): 55-67.
|
|
[HE T T, ZHANG Q. Current applications and development trends of knowledge graphs in oil and gas exploration and development[J]. Nat. Gas Ind., 2024, 44(9): 55-67.]
|
[5] |
潘焕泉, 刘剑桥, 龚斌, 等. 油藏动态分析场景大模型构建与初步应用[J]. 石油勘探与开发, 2024, 51(5): 1175-1182.
doi: 10.11698/PED.20240208
|
|
[PAN H Q, LIU J Q, GONG B, et al. Construction and preliminary application of large models for reservoir dynamic analysis scenarios[J]. Petrol. Explor. Dev., 2024, 51(5): 1175-1182.]
|
[6] |
刘合, 任义丽, 李欣, 等. 油气行业人工智能大模型应用研究现状及展望[J]. 石油勘探与开发, 2024, 51(4): 910-923.
doi: 10.11698/PED.20240254
|
|
[LIU H, REN Y L, LI X, et al. Current status and prospects of the application of artificial intelligence large models in the oil and gas industry[J]. Petrol. Explor. Dev., 2024, 51(4): 910-923.]
|
[7] |
LIU H, YIN H, LUO Z, et al. Integrating chemistry knowledge in large language models via prompt engineering[J]. Synth. Syst. Biotechnol., 2025, 10(1). DOI: 10.1016/j.synbio.2024.07.004.
|
[8] |
GUO K, DIEFENBACH D, GOURRU A, et al. Fine-tuning strategies for domain specific question answering under low annotation budget constraints[C]//2023 IEEE 35th International Conference on Tools with Artificial Intelligence (ICTAI). Atlanta, GA, USA: IEEE, 2023: 166-171. DOI: 10.1109/ICTAI59109.2023.00032.
|
[9] |
BARNETT S, KURNIAWAN S, THUDUMU S, et al. Seven failure points when engineering a retrieval augmented generation system[C]// Proceedings of the 2024 IEEE/ACM Conference on AI Engineering:Software Engineering for AI (CAIN). Lisbon: ACM, 2024: 45-54. DOI: 10.1145/3644815.3644945.
|
[10] |
CAI Y, GUO Z, PEI Y, et al. SimGRAG: Leveraging similar subgraphs for knowledge graphs driven retrieval-augmented generation[C]// Findings of the Association for Computational Linguistics:ACL 2025. Bangkok: ACL, 2025: 163-175.
|
[11] |
DONG Y, WANG S, ZHENG H, et al. Advanced RAG models with graph structures:Optimizing complex knowledge reasoning and text generation[C]//Proceedings of the 2024 International Symposium on Computer Engineering and Information Communication (ISCEIC). Nanjing: IEEE, 2024: 233-240. DOI: 10.1109/ISCEIC63613.2024.10810209.
|
[12] |
SHEN Z, DIAO C, VOUGIOUKLIS P, et al. GeAR: Graph-enhanced agent for retrieval-augmented generation[C]// Findings of the Association for Computational Linguistics:ACL 2025. Bangkok: ACL, 2025: 7201-7213.
|
[13] |
OTAL H T, FARAONE S V, CANBAZ M A. A new perspective on ADHD research: Knowledge graph construction with LLMs and network based insights[C]// COMPLEX NETWORKS 2024: The 13th International Conference on Complex Networks and Their Applications. Cham: Springer, 2024: 337-349. (Lecture Notes in Computer Science, vol. 14695). DOI: 10.1007/978-3-031-82427-2_28.
|
[14] |
TANG X, LI J, DU N, et al. Adapting to non-stationary environments: Multi-armed bandit enhanced retrieval-augmented generation on knowledge graphs[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Philadelphia: AAAI Press, 2025: 3352-3360.
|
[15] |
PUROHIT S, CHIN G, MACKEY P S, et al. GraphAide: Advanced graph-assisted query and reasoning system[C]// Proceedings of the 2024 IEEE International Conference on Big Data. Los Angeles: IEEE, 2024: 1669-1678. DOI: 10.1109/BigData62323.2024.10825705.
|
[16] |
WU J, ZHU J, QI Y, et al. Medical Graph RAG:Towards safe medical large language model via graph retrieval-augmented generation[C]//Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025). Bangkok: ACL, 2025: 1381-1395.
|
[17] |
MAHALINGAM A, GANDE V K, CHADHA A, et al. SKETCH:Structured knowledge enhanced text comprehension for holistic retrieval[C]//Proceedings of the 1st Workshop on Generative AI for Knowledge Graphs (GenAI-K 2025). Bangkok: ACL, 2025: 10-22.
|
[18] |
HAMZA A, ABDULLAH, AHN Y H, et al. LLaVA needs more knowledge: Retrieval augmented natural language generation with knowledge graph for explaining thoracic pathologies[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Philadelphia: AAAI Press, 2025: 5678-5686
|
[19] |
JIANG P, XIAO C, JIANG M, et al. Reasoning-enhanced healthcare predictions with knowledge graph community retrieval[C]// Proceedings of the International Conference on Learning Representations (ICLR 2025). Singapore: ICLR, 2025.
|
[20] |
XIONG Y, ZHANG R, LIU Y, et al. When knowledge graph meets retrieval augmented generation for wireless networks: A tutorial and case study[J]. IEEE Wireless Communications, 2025, in press.
|
[21] |
ROY R S, HINZE C, SCHLOTTHAUER J, et al. RAGONITE: Iterative retrieval on induced databases and verbalized RDF for conversational QA over KGs with RAG[C]// Proceedings of BTW 2025 Workshops. Bonn: Gesellschaft für Informatik, 2025: 45-56.
|
[22] |
EMONET V, BOLLEMAN J, DUVAUD S, et al. LLM-based SPARQL query generation from natural language over federated knowledge graphs[C]//Proceedings of the 1st Workshop on Federated Knowledge Graphs (FedKG 2025). Aachen: CEUR-WS, 2025: 12-24. (CEUR Workshop Proceedings, vol. 3953).
|
[23] |
BARRON R C, GRANTCHAROV V, WANNA S, et al. Domain-specific retrieval-augmented generation using vector stores, knowledge graphs, and tensor factorization[C]//Proceedings of the 23rd IEEE International Conference on Machine Learning and Applications (ICMLA). Miami: IEEE, 2024: 1669-1676. DOI: 10.1109/ICMLA61862.2024.00258.
|
[24] |
WU Y, HUANG Y, HU N, et al. CoTKR:Chain-of-thought enhanced knowledge rewriting for complex knowledge graph question answering[C]//Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP 2024). Miami: ACL, 2024: 3501-3520. DOI: 10.18653/v1/2024.emnlp-main.205.
|
[25] |
KERRE D, LAURENT A, MAUSSANG K, et al. Semantic enrichment of the quantum cascade laser properties in text:A knowledge graph generation approach[C]//Proceedings of the 1st Workshop on Quantum Knowledge Graphs (QKG 2025). Aachen: CEUR-WS, 2025: 56-67. (CEUR Workshop Proceedings, vol. 4020).
|
[26] |
SRINIVAS S S, DAS A, GUPTA S, et al. Accelerating manufacturing scale-up from material discovery using agentic web navigation and retrieval-augmented AI for process engineering schematics design[C]// Proceedings of the First MARW Workshop at AAAI 2025. Philadelphia: AAAI, 2025.
|
[27] |
TRAAG V A, WALTMAN L, VAN ECK N J. From Louvain to Leiden: Guaranteeing well-connected communities[J]. Scientific Reports, 2019, 9: 5233. DOI: 10.1038/s41598-019-41695-z.
pmid: 30914743
|
[28] |
SHAHUL E S, JAMES J, ESPINOSA ANKE L, SCHOCKAERT S. RAGAs:Automated evaluation of retrieval augmented generation[C]//Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2024):System Demonstrations. St. Julians: ACL, 2024: 150-158.
|