Indexed by CSTPCD
Scopus

Petroleum Science Bulletin ›› 2025, Vol. 10 ›› Issue (5): 997-1014. doi: 10.3969/j.issn.2096-1693.2025.03.020

Previous Articles     Next Articles

A methodology for predicting production dynamics of horizontal wells in bottom water reservoirs by integrating data-driven approaches with percolation mechanisms

JIN Qingshuang1,2(), XUE Yongchao1,2,*(), ZHANG Ying1,2, LIU Xiaoqi1,2, LI Quan3, ZHENG Aile1,2   

  1. 1 State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 102249, China
    2 College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China
    3 CNOOC (China) Co., LTD. Tianjin Branch, Tianjin 301800, China
  • Received:2025-05-16 Revised:2025-07-04 Online:2025-10-15 Published:2025-10-21
  • Contact: XUE Yongchao E-mail:qingshuang.jin@163.com;xyc75@dgqinyehang.com

数据驱动与渗流机理融合的底水油藏水平井生产动态预测方法

金青爽1,2(), 薛永超1,2,*(), 张颖1,2, 刘晓旗1,2, 李权3, 郑爱乐1,2   

  1. 1 中国免费靠逼视频(北京)油气资源与工程全国重点实验室,北京 102249
    2 中国免费靠逼视频(北京)石油工程学院,北京 102249
    3 中海石油(中国)有限公司天津分公司,天津 301800
  • 通讯作者: 薛永超 E-mail:qingshuang.jin@163.com;xyc75@dgqinyehang.com
  • 作者简介:金青爽(1998年—),博士研究生,主要从事基于人工智能的油井产量预测与高含水油藏控水数值模拟框架搭建研究,qingshuang.jin@163.com
  • 基金资助:
    中国海洋石油集团有限公司”十四五”重大科技项目(KJGG-2022-15-0303)

Abstract:

The production dynamics of horizontal wells in bottom-water sandstone reservoirs are influenced by multiple factors, including reservoir properties and production regimes, posing significant challenges for prediction. Traditional empirical formulas and numerical simulation methods have numerous limitations. In recent years, with the advancement of intelligent oilfield processes, machine learning approaches have been increasingly applied to oilfield production processes. Compared to traditional methods, machine learning offers comprehensiveness and efficiency but lacks physical interpretability and robustness, thereby restricting its credibility and applicability in practical engineering scenarios. To address this issue, firstly, taking a block in the Bohai Oilfield as an example, this paper establishes a seepage mechanism model for horizontal wells in bottom-water sandstone reservoirs considering time-varying permeability. Secondly, improvements are made to the traditional Long Short-Term Memory (LSTM) neural network structure to construct a neural network framework that supports multi-layer inputs of both static and dynamic data, enhancing the model’s adaptability to various geological conditions, with adjustable weights for static and dynamic parameters. Lastly, a dataset generated from the seepage mechanism model is used, and through dataset fusion, a hybrid prediction model combining data-driven and seepage physics mechanisms for horizontal well production dynamics is established. This data-physics fusion mechanism enhances the interpretability and robustness of the model. Test results indicate that the multi-layer input neural network framework for static and dynamic parameters achieves slightly higher prediction accuracy compared to traditional LSTM networks, while the hybrid model integrating data-driven and seepage mechanism shows a significantly improved prediction accuracy over the multi-layer input neural network framework. Field application also verifies the high efficiency and practicality of this hybrid model in predicting the production dynamics of horizontal wells, providing strong support for optimizing oilfield development plans and establishing production regimes.

Key words: horizontal well production dynamic prediction, Long Short-Term Memory neural network, dynamic and static combination, physical mechanism, integrated model

摘要:

底水砂岩油藏水平井生产动态受储层属性、生产制度等多因素影响,预测难度大。传统经验公式和数值模拟等方法存在诸多局限性。近年来,伴随油田智能化进程,机器学习方法逐渐广泛应用于油田生产过程。相对于传统方法,该方法兼具全面性与高效性,但缺乏物理可解释性和鲁棒性,限制了其在实际工程中的可信度与适用性。为解决该问题,首先,本文以渤海油田某区块为例,建立考虑渗透率时变的底水砂岩油藏水平井渗流机理模型。其次,本文对传统LSTM神经网络结构进行了改进,构建了一个支持动静态数据多层输入的神经网络框架,提升了模型对不同地质状况的适应性,且该框架的动静态参数权重可调整。最后,本文用渗流机理模型生成机理模型数据集,并采用数据集融合方式建立了数据驱动与渗流物理机理融合的水平井生产动态预测模型,数据—物理融合机制提升了该模型的可解释性和鲁棒性。测试结果表明:动静态参数多层输入神经网络框架相对于传统LSTM神经网络预测精度小幅提升;数据驱动与渗流机理融合模型相比于动静态参数多层输入神经网络框架预测精度显著提升。现场应用效果也验证了该融合模型在水平井生产动态预测中的高效性和实用性,为油田开发方案优化和生产制度制定提供了有力支撑。

关键词: 水平井生产动态预测, 长短期记忆神经网络, 动静结合, 物理机理, 融合模型

CLC Number: