[1] |
TANG H F, TIAN Z W, GAO Y F, et al. Review of volcanic reservoir geology in China[J]. Earth--Science Reviews, 2022, 232: 104-158.
|
[2] |
胡煦. X火山岩凝析气藏气井产能评价研究[D]. 西南免费靠逼视频, 2016.
|
|
[HU X. Study on the evaluation of gas well productivity in X volcanic condensate gas reservoirs[D]. SouthWest Petroleum University, 2016.]
|
[3] |
郭巧珍, 李道清, 仇鹏, 等. 克拉美丽火山岩凝析气藏产水规律及产水模式[J]. 西南免费靠逼视频学报(自然科学版), 2024, 46(5): 106 114.
|
|
[GUO Q Z, LI D Q, QIU P, et al. Water-yielding laws and patterns of volcanic condensate gas reservoir in Kalameili[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2024, 46(5): 106-114.]
|
[4] |
李瑞磊, 杨立英, 朱建峰, 等. 松辽盆地南部断陷层火山岩储层特征及油气成藏主控因素[J]. 地学前缘, 2023, 30(04): 100-111.
|
|
[LI R L, YANG l Y, ZHU J F, et al. Volcanic reservoir characteristics and hydrocarbon accumulation control factors of rift depressions in southern Songliao Basin[J]. Earth Science Frontiers, 2023, 30(04): 100-111.]
|
[5] |
任宪军. 火山岩气井产能评价方法及其在松南气田中的应用[J]. 世界地质, 2022, 41(04): 826-833.
|
|
[REN X J. Method for productivity evaluation of volcanic gas wells and its implication in Songnan gas field, Jilin Province[J]. World Geology, 2022, 41(04): 826-833.]
|
[6] |
李晓平, 李裕民, 邵剑波, 等. 裂缝气藏气井产能特征及产能方程修正方法研究[J]. 西南免费靠逼视频学报(自然科学版), 1-9[2024-10-30].
|
|
[LI X P, LI Y M, SHAO J B, et al. Research on productivity characteristics and correction methods for productivity equations of gas wells in fractured gas reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 1-9[2024-10-30]].
|
[7] |
薛军, 张茂林, 宋惠馨, 等. 考虑多因素的低渗气藏产能计算方程[J]. 科学技术与工程, 2020, 20(10): 3940-3945.
|
|
[XUE J, ZHANG M l, SONG H X, et al. Multiple-factor estimation for productivity of low permeability gas reservoir[J]. Science Technology and Engineering, 2020, 20(10): 3940-3945].
|
[8] |
LIN J, HE H, WANG Y. A well test analysis model of generalized tube flow and seepage coupling[J]. Petroleum Exploration and Development 2021; 48(4): 923-934.
|
[9] |
HUI G, CHEN Z, WANG Y, et al. An integrated machine learning-based approach to identifying controlling factors of unconventional shale productivity[J]. Energy 2023; 266: 126512.
|
[10] |
周学民, 唐亚会. 徐深气田火山岩气藏产能特点及影响因素分析[J]. 天然气工业, 2007, (01): 90-92+157-158.
|
|
[ZHOU X M, TANG Y H. Productivity characteristics and influential factors analysis of lava gas reservoir of Xushen gas field[J]. Natural Gas Industry, 2007, (01): 90-92+157-158.]
|
[11] |
路琳琳, 孙贺东, 杨作明, 等. 克拉美丽气田产能影响因素分析[J]. 石油天然气学报, 2013, 35(03): 134-137+168.
|
|
[LU L L, SUN H D, YANG Z M, et al. The affecting factors of gas well productivity in Kelameili gas field[J]. Journal of Oil and Gas Technology, 2013, 35(03): 134-137+168.]
|
[12] |
廖伟, 石新朴, 颜泽江, 等. 克拉美丽气田产能影响因素[J]. 新疆石油地质, 2009, 30(06): 731-733.
|
|
[LIAO W, SHI X P, YAN Z J, et al. Factors affecting the conductivity of Kelameili gas field[J]. Xinjiang Petroleum Geology, 2009, 30(06): 731-733.]
|
[13] |
潘前樱, 王彬, 杨作明, 等. 低渗透火山岩气藏提高单井产能技术研究——以克拉美丽气田滴西18井区为例[J]. 石油天然气学报, 2009, 31(03): 314-317.
|
|
[PAN Q Y, WANG n, YANG Z M, et al. Research on the technology of increasing single-well production capacity in low-permeability volcanic gas reservoirs--Taking the example of Dixi 18 well area in Kara Beautiful Gas Field[J], Journal of Oil and Gas Technology, 2009, 31(03): 314-317.]
|
[14] |
刘先山, 孙军昌, 郭和坤, 等. 低渗火山岩气藏渗吸机理实验研究[J]. 西安免费靠逼视频学报(自然科学版), 2021, 36(01): 45-51+91.
|
|
[LIU J S, SUN J C, GUO H K, et al. Experimental study of imbibition mechanism in low permeability volcanic gas reservoir[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2021, 36(01): 45-51+91.]
|
[15] |
胡晓东, 涂志勇, 罗英浩, 等. 拟合函数—神经网络协同的页岩气井产能预测模型[J]. 石油科学通报, 2022, 7(03): 394-405.
|
|
[HU X D, TU Z Y, LUO Y H, et al. Shale gas well productivity prediction model with fitted function-neural network cooperation. Petroleum Science Bulletin, 2022, 7(03): 394-405]
|
[16] |
DONG Y, SONG L, ZHAO Q, et al. A physics-guided eXtreme gradient boosting model for predicting the initial productivity of oil wells[J]. Geoenergy Science and Engineering, 2023, 231: 212402.
|
[17] |
KUANG L, HE L I U, YILI R E N, et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1): 1-14.
doi: 10.1016/S1876-3804(21)60001-0
|
[18] |
SIRCAR A, YADAV K, RAYAVARAPU K, et al. Application of machine learning and artificial intelligence in oil and gas industry[J]. Petroleum Research, 2021, 6(4): 379-391.
|
[19] |
XUE L, LIU Y, XIONG Y, et al. A data-driven shale gas production forecasting method based on the multi-objective random forest regression[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107801.
|
[20] |
SONG X, LIU Y, XUE L, et al. Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model[J]. Journal of Petroleum Science and Engineering, 2020, 186: 106682.
|
[21] |
WANG L, YAO Y, WANG K, et al. Hybrid application of unsupervised and supervised learning in forecasting absolute open flow potential for shale gas reservoirs[J]. Energy, 2022, 243: 122747.
|
[22] |
李文倚, 侯明雨, 全航, 等. 一种基于知识图谱和随机森林算法的致密气井产能预测方法[J]. 特种油气藏, 1-12 [2024-10-30].
|
|
[LI W Y, HOU M Y, QUAN H, et al. A production prediction method for tight gas wells based on knowledge graph and random forest algorithm[J], Special Oil & Gas Reservoirs, 1-12 [2024-10-30]].
|
[23] |
SHAHKARAMI A, MOHAGHEGH S. Applications of smart proxies for subsurface modeling[J]. Petroleum Exploration and Development, 2020, 47(2): 400-412.
doi: 10.1016/S1876-3804(20)60057-X
|
[24] |
董银涛, 宋来明, 张迎春, 等. 基于物理约束数据挖掘算法的海上油井初期产能预测方法[J]. 油气地质与采收率, 2022, 29(01): 137-144.
|
|
[DONG Y T, SONG L M, ZHANG Y C, et al. Initial productivity prediction method for offshore oil wells based on data mining algorithm with physical constraints[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(01): 137-144.]
|
[25] |
DONG Y, QIU L, LU C, et al. A data-driven model for predicting initial productivity of offshore directional well based on the physical constrained eXtreme gradient boosting (XGBoost) trees[J]. Journal of Petroleum Science and Engineering, 2022, 211: 110176.
|
[26] |
张亦知, 程诚, 范钇彤, 等. 基于物理知识约束的数据驱动式湍流模型修正及槽道湍流计算验证[J]. 航空学报, 2020, 41(03): 119-128.
|
|
[ZHANG Y Z, CHENG C, FAN Y T, et al. Data-driven correction of turbulence model with physics knowledge constrains in channel flow[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(03): 119-128.]
|
[27] |
CHEN Y, HUANG D, ZHANG D, et al. Theory-guided hard constraint projection (HCP): A knowledge-based data-driven scientific machine learning method[J]. Journal of Computational Physics, 2021, 445: 110624.
|
[28] |
YAN B, HARP D R, CHEN B, et al. A physics-constrained deep learning model for simulating multiphase flow in 3D heterogeneous porous media[J]. Fuel, 2022, 313: 122693.
|
[29] |
宋宣毅, 刘月田, 马晶, 等. 基于灰狼算法优化的支持向量机产能预测[J]. 岩性油气藏, 2020, 32(02): 134-140.
|
|
[SONG X Y, LIU Y T, MA J, et al. Productivity forecast based on support vector machine optimized by grey wolf optimizer[J]. Lithologic Reservoirs, 2020, 32(02): 134-140.]
|
[30] |
鲍李银, 孙盼科, 陈永辉, 等. 陆相页岩油纹层型、夹层型储层孔隙结构特征及其约束下的流体可动性差异——以吉木萨尔凹陷芦草沟组页岩油储层为例. 石油科学通报, 2024, 09(06): 866-884.
|
|
[BAO L Y, SUN P K, CHEN Y H, et al. Characteristics of pore structure and fluid mobility differences under constraints of continental shale laminar and interbedded reservoirs: A case study of the Lucaogou formation shale reservoir in the Jimusar depression. Petroleum Science Bulletin, 2024, 09(06): 866-884.]
|
[31] |
李晓平, 李裕民, 邵剑波, 等. 裂缝气藏气井产能特征及产能方程修正方法研究[J]. 西南免费靠逼视频学报(自然科学版), 2024, 46(5): 97 105.
|
|
[LI X P, LI Y M, SHAO J B, et al. Research on productivity characteristics and correction of productivity equations of gas wells in fractured gas reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2024, 46(5): 97-105.]
|