[1] |
李跃刚, 王晓东. 利用气藏压力系统分析方法判断井间连通性[J]. 低渗透油气田, 1999, 4(3): 51-54.
|
|
[LI Y G, WANG X D. Determining interwell connectivity using gas reservoir pressure system analysis methods[J]. Low permeability oil and gas field, 1999, 4(3): 51-54.]
|
[2] |
孙晓娜, 卫喜辉, 谢明英, 等. 示踪剂技术在海上复杂驱动类型油田开发中的应用[J]. 石油地质与工程, 2022, 36(2): 62-65.
|
|
[SUN X N, WEI X H, XIE M Y, et al. Application of tracer technology in the development of offshore complex drive type oilfield[J]. Petroleum Geology and Engineering, 2022, 36(2): 62-65.
|
[3] |
聂晶. 基于脉冲试井的低渗透油藏井间连通性分析[J]. 长江大学学报自然科学版: 理工卷, 2013, 10(4): 136-137.
|
|
[NIE J. Analysis of inter well connectivity in low-permeability reservoirs based on pulse well testing[J]. Journal of Yangtze University: Natural Science Edition, 2013, 10(4): 136-137.]
|
[4] |
廖明光, 廖成基, 陈小凡. 动静态方法在油藏井间连通性分析中的应用研究[J]. 特种油气藏, 2020, 27(3): 131-136.
|
|
[LIAO M G, LIAO C J, CHEN X F. Application of dynamic and static analyses in inter-well connectivity characterization[J]. Special Oil & Gas Reservoirs, 2020, 27(3): 131-136.]
|
[5] |
陈利新, 王胜雷, 姜振学, 等. 哈拉哈塘油田塔河北区块奥陶系断裂发育特征及断控区储层类型与分布预测[J]. 石油科学通报, 2024, 9(3): 408-421.
|
|
[CHEN L X, WANG S L, JIANG Z X, et al. Fault characteristics, reservoir types and distribution prediction in a fault-controlled area in the Ordovician strata of the Tahebei Block, Halahatang Oilfield[J]. Petroleum Science Bulletin, 2024, 9(3): 408-421.]
|
[6] |
刘卫东, 刘腾蛟, 纪拥军, 等. 利用微地震监测成果判断砂砾岩油藏压裂裂缝井间连通性——以准噶尔盆地玛湖油田为例[J]. 石油地球物理勘探, 2022, 57(2): 395-404.
|
|
[LIU W D, LIU T J, JI Y J, et al. Determination of inter-well connectivity of fractured fractures in glutenite reservoirs by microseismic monitoring results: A case study of Mahu Oilfield in the Junggar Basin[J]. Oil Geophysical Prospecting, 2022, 57(2): 395-404.]
|
[7] |
ZHAO H, KANG Z J, ZHANG Y, et al. An interwell connectivity numerical method for geological parameter characterization and oil-water two-phase dynamic prediction[J]. Acta Petrolei Sinica, 2014, 35(5): 922-927.
doi: 10.7623/syxb201405012
|
[8] |
李颖, 赵辉, 康志江, 等. 考虑关停井情况的井间动态连通性反演方法[J]. 天然气与石油, 2015, (5): 46-51.
|
|
[LI Y, ZHAO H, KANG Z J, et al. Inverse method for inter well dynamic connectivity considering the closure of wells[J]. Natural Gas and Oil, 2015, (5): 46-51.]
|
[9] |
赵辉, 康志江, 孙海涛, 等. 水驱开发多层油藏井间连通性反演模型[J]. 石油勘探与开发, 2016, 43(1): 99-106.
doi: 10.11698/PED.2016.01.12
|
|
[ZHAO H, KANG Z J, SUN H T, et al. An interwell connectivity inversion model for waterflooded multilayer reservoirs[J]. Petroleum Exploration and Development, 2016, 43 (1): 99-106.]
doi: 10.11698/PED.2016.01.12
|
[10] |
王磊, 沈金松, 衡海亮, 等. 基于路径形态学和正弦函数族匹配的电成像测井缝洞自动识别与分离方法研究[J]. 石油科学通报, 2021, 6(3): 380-395.
|
|
[WANG L, SHEN J S, HENG H L, et al. Automatic fractured-vuggy identification and extraction from electric imaging logging data based on an incomplete path opening operation and a sinusoidal database[J]. Petroleum Science Bulletin, 2021, 6(3): 380-395.]
|
[11] |
WANG J G, SHEN H W, QIU Y X, et al. Feasibility analysis of interwell dynamic connectivity inversion model based on multivariate linear regression: Taking Chang-6 reservoir in Wuliwan area 1 of Jing’an oilfield as an example[J]. Unconventional Oil & Gas, 2019, 6(2): 57-62.
|
[12] |
吴晓慧, 邓景夫, 陈晓明, 等. 注采连通性计算及渗流通道的定量识别[J]. 特种油气藏, 2019, 26(3): 114-118.
|
|
[WU X H, DENG J F, CHEN X M, et al. Calculation of injection-production connectivity and quantitative identification of flow channel[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 114-118.]
|
[13] |
付辉, 卢立泽, 王贺华, 等. 油藏井间动态连通性及地质控制因素研究——以南图尔盖盆地Konys油田为例[J]. 东北免费靠逼视频学报, 2016, 40(3): 89-96+6-7.
|
|
[FU H, LU L Z, WANG H H, et al. Study on dynamic connectivity and geological control factors between reservoir wells: A case study of Konys Oilfield in the South Turgai Basin[J]. Journal of Northeast Petroleum University, 2016, 40(3): 89-96+6-7.]
|
[14] |
喻秋兰, 刘斌, 刘春志, 等. 应用聚合物数值模拟方法评价井间动态连通性[J]. 断块油气田, 2017, 24(6): 827-830.
|
|
[YU Q L, LIU B, LIU Z C, et al. Evaluation of inter-well dynamic connectivity based on polymer numerical simulation[J]. Fault-Block Oil & Gas Field, 2017, 24(6): 827-830.]
|
[15] |
CHRIS C. Production optimization in waterfloods: A new approach to interwell-connectivity modeling[J]. Journal of Petroleum Technology, 2017, 69(12): 59-61.
|
[16] |
马立民, 于忠良, 余成林, 等. 基于节点分析劈分法的多层油藏井间动态连通性分析[J]. 科学技术与工程, 2022, 22(11): 4335-4343.
|
|
[MA L M, YU Z L, YU C L, et al. Analysis of dynamic inter-well connectivity in multi-layer reservoirs: Based on node analysis splitting method[J]. Science Technology and Engineering, 2022, 22(11): 4335-4343.]
|
[17] |
曾庆桥, 张亮, 刘萍, 等. 基于井间连通性的致密油藏注水井动态裂缝研究[J]. 断块油气田, 2022, 29(3): 383-389.
|
|
[ZENG Q Q, ZHANG L, LIU P, et al. Study on dynamic fracture of injection well based on inter-well connectivity in tight oil reservoir[J]. Fault-Block Oil & Gas Field, 2022, 29(3): 383-389.]
|
[18] |
刘柱, 刘音颂, 董驰, 等. 基于多元线性回归模型的油井来水方向识别[J]. 重庆理工大学学报(自然科学), 2017, 31(1): 53-57.
|
|
[LIU Z, LIU Y S, DONG C, et al. Identification of the watered-out direction of a producing well based on multiple linear regression model[J]. Journal of Chongqing University of Technology(Natural Science), 2017, 31(1): 53-57.]
|
[19] |
易正昌. 一种利用注采数据评价水驱油藏井间连通性的新方法[J]. 中外能源, 2019, 24(1): 40-47.
|
|
[YI Z C. A new method for evaluating inter-well connectivity in water-flooding reservoirs using injection and production data[J]. Sino-Global Energy, 2019, 24(1): 40-47.]
|
[20] |
LIU J Z. Potential for evaluation of inter-well connectivity under the effect of intraformational bed in reservoirs utilizing machine learning methods[J]. Geofluids, 2020, 2020: 1-10.
|
[21] |
刘巍, 刘威, 谷建伟, 等. 利用卡尔曼滤波和人工神经网络相结合的油藏井间连通性研究[J]. 油气地质与采收率, 2020, 27(2): 118-124.
|
|
[LIU W, LIU W, GU J W, et al. Research on interwell connectivity of oil reservoirs based on Kalman filter and artificial neural network[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2): 118-124.]
|
[22] |
YUAN J R, ZENG X J, WU H Y, et al. Analytical determination of interwell connectivity based on interwell influence[J]. Tsinghua Science and Technology, 2021, 26: 813-820.
|
[23] |
胡慧芳, 张世明, 曹小朋, 等. 基于图神经网络的井间注采动态响应研究[J]. 油气地质与采收率, 2023, 30(4): 130-136.
|
|
[HU H F, ZHANG S M, CAO X P, et al. Research on dynamic response of interwell injection-production based on graph neural network[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(4): 130-136.]
|
[24] |
ZHAO Y L, LI H L, ZENG X J, et al. Research on inter-well connectivity of water-flooding reservoir: Temporal neural network based on graph structure[J]. Geoenergy Science and Engineering, 2024, 242: 213221.
|
[25] |
KUMAR I, TRIPATHI B E K, SINGH A. Attention-based LSTM network-assisted time series forecasting models for petroleum production[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106440.
|
[26] |
白铂, 刘玉婷, 马驰骋, 等. 图神经网络[J]. 中国科学: 数学, 2020, 50(3): 367-384.
|
|
[BAI B, LIU Y T, MA C C, et al. Graph neural network[J]. Scientia Sinica(Mathematica), 2020, 50(3): 367-384.]
|
[27] |
蒋玉英, 陈心雨, 李广明, 等. 图神经网络及其在图像处理领域的研究进展[J]. 计算机工程与应用, 2023, 59(7): 15-30.
doi: 10.3778/j.issn.1002-8331.2205-0503
|
|
[JIANG Y Y, CHEN X Y, LI G M, et al. Graph neural network and its research progress in field of image processing[J]. Computer Engineering and Applications, 2023, 59(7): 15-30.]
doi: 10.3778/j.issn.1002-8331.2205-0503
|
[28] |
王雨嫣, 廖柏林, 彭晨, 等. 递归神经网络研究综述[J]. 吉首大学学报(自然科学版), 2021, 42(1): 41-48.
|
|
[WANG Y Y, CHEN B L, PRNG C, et al. Research review of recurrent neural networks[J]. Journal of Jishou University(Natural Science Edition), 2021, 42(1): 41-48.]
|
[29] |
杨勇. 胜利油田勘探开发大数据及人工智能技术应用进展[J]. 油气地质与采收率, 2022, 29(1): 1-10.
|
|
[YANG Y. Application progress of big data & AI technologies in exploration and development of Shengli Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1): 1-10.]
|
[30] |
谭鑫龙. 基于RNN-DTW的注采井间连通性判断[J]. 石油地质与工程, 2023, 37(5): 76-80.
|
|
[TAN X L. Connectivity judgment between injection and production wells based on RNN-DTW[J]. Petroleum Geology and Engineering, 2023, 37(5): 76-80.]
|
[31] |
杨柳青, 王守东, 杜宝强. 基于注意力机制的无监督学习地震数据随机和不规则噪声衰减方法[J]. 石油科学通报, 2024, 9(1): 35-49.
|
|
[YANG L Q, WANG S D, DU B Q. Attention mechanism-based unsupervised learning seismic data random and erratic noise attention framework[J]. Petroleum Science Bulletin, 2023, 9(1): 35-49.]
|
[32] |
LIU Q, ZHU W, MA F, et al. Graph attention network-based fluid simulation model[J]. AIP Advances, 2022, 12(9): 095114.
|
[33] |
DEO I K, JAIMAN R. Predicting waves in fluids with deep neural network[J]. Physics of Fluids, 2022, 34(6): 067108.
|
[34] |
YANG L, WANG S, CHEN X, et al. High-fidelity permeability and porosity prediction using deep learning with the self-attention mechanism[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 34(7): 3429-3443.
|
[35] |
倪景峰, 刘雪峰, 邓立军. 矿井通风参数缺失数据插补方法[J]. 煤炭学报, 2024, 49(5): 2315-2323.
|
|
[NI J F, LIU X F, DENG L J. Method for filling missing data of mine ventilation parameters[J]. Journal of China Coal Society, 2024, 49(5): 2315-2323.]
|