[1] |
LI D, YI C, JIA LS. The Deep Sea No. 1 Semi-Submersible Energy Station[J]. Engineering, 2025, 50(1): 18-23.
|
[2] |
刘书杰, 黄熠, 陈浩东, 等. “深海一号”二期深水高压气田钻完井关键技术创新与实践[J]. 石油钻探技术, 2025, 53(03): 20-29.
|
|
[LIU S J, HUANG Y, CHEN H D, et al. Innovation and practice of key technologies for drilling and completion indeepwater high-pressure gas field of “Deep Sea No.1” Phase II Project[J]. Petroleum Drilling Techniques, 2025, 53(03): 20-29.]
|
[3] |
徐化奎, 吕柏呈, 李达. 基于现场监测的“深海一号”能源站在役动力响应状态评估[J]. 中国海上油气, 2024, 36(03): 190-197.
|
|
[XU H K, LV B C, LI D. Assessment of in-service dynamic response status of “Deep Sea No.1” energy station based on field monitoring[J]. China Offshore Oil and Gas, 2024, 36(03): 190-197.]
|
[4] |
谢玉洪, 张秀林. “深海一号”能源站工程技术与管理创新[J]. 工程管理科技前沿, 2022, 41(6): 1-7.
|
|
[XIE Y H, ZHANG X L. “Deep Sea No.1” Energy Station Engineering Technology and Management Innovation[J]. Frontiers of Science and Technology of Engineering Management, 2022, 41(6): 1-7.]
|
[5] |
尤学刚, 周守为, 张秀林, 等. “深海一号”能源站建设实践与创新[J]. 中国工程科学, 2022, 24(3): 66-79.
doi: 10.15302/J-SSCAE-2022.03.008
|
|
[YOU X G, ZHOU S W, ZHANG X L, et al. Construction Practice and Innovation of “Deep Sea One” Energy Station[J]. Strategic Study of CAE, 2022, 24(3): 66-79.]
doi: 10.15302/J-SSCAE-2022.03.008
|
[6] |
李中. 中国海油“深海一号”大气田钻完井关键技术进展及展望[J]. 石油钻探技术, 2023, 51(4): 88-94.
|
|
[LI Z. Progress and Prospect of Key Technologies for Drilling and Completion of “Deep Sea No.1” Gas Field of CNOOC[J]. Petroleum Drilling Techniques, 2023, 51(4): 88-94.]
|
[7] |
尹彦坤, 周声结, 李清明, 等. 聚酯缆在“深海一号”半潜式生产平台的应用技术[J]. 船舶工程, 2022, 44(S1): 592-596.
|
|
[YIN Y K, ZHOU S J, LI M Q, et al. Polyester Rope Application on “Deepwater 1” SEMI Submersible Platform[J]. Ship Engineering, 2022, 44(S1): 592-596.]
|
[8] |
刘文岭, 韩大匡. 数字孪生油气藏: 智慧油气田建设的新方向[J]. 石油学报, 2022, 43(10): 1450-1461.
doi: 10.7623/syxb202210008
|
|
[LIU W L, HAN D K. Digital twin system of oil and gas reservoirs: a new direction for smart oil and gas field construction[J]. Acta Petrolei Sinica, 2022, 43(10): 1450-1461.]
doi: 10.7623/syxb202210008
|
[9] |
王彪. 采油井数字孪生体构建方法及应用研究[D]. 北京: 中国免费靠逼视频(北京), 2023.
|
|
[WANG B. Research on the construction method and application of digital twin for oil production well[D]. Beijing: China University of Petroleum(Beijing), 2023.]
|
[10] |
林伯韬, 朱海涛, 金衍, 等. 油气钻采数字孪生模型构建方法及应用案例[J]. 石油科学通报, 2024, 9(2): 282-296.
|
|
[LIN B T, ZHU H T, JIN Y, et al. Modeling approach and case studies of digital twin in drilling and production of oil and gas fields[J]. Petroleum Science Bulletin, 2024, 9(2): 282-296.]
|
[11] |
ALMEIDA V K, OLIVEIRA D E, BARROS C D T, et al. A Digital Twin System for Oil and Gas Industry: A Use Case on Mooring Lines Integrity Monitoring[C]// Proceedings of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems. 2024: 322-331.
|
[12] |
于永志. 数字孪生油田注水系统可视化平台的设计与研究[D]. 大庆: 东北免费靠逼视频, 2023.
|
|
[YU Y Z. Design and research of a digital twin oilfield water injection system visualisation platform[D]. Daqing: Northeast Petroleum University, 2023.]
|
[13] |
REBELLO C M, JÄSCHKEA J, NOGUEIRA I B R. Digital twin framework for optimal and autonomous decision-making in cyber-physical systems: enhancing reliability and adaptability in the oil and gas industry[J]. arXiv preprint arXiv: 2311.12755, 2023.
|
[14] |
闫正和. 海上气田群一体化闭环优化配产研究[J]. 特种油气藏, 2022, 29(3), 92-97.
doi: 10.3969/j.issn.1006-6535.2022.03.013
|
|
[YAN Z H. Study on integrated closed-loop optimal production allocation of offshore gas field clusters[J]. Special Oil & Gas Reservoirs, 2022, 29(3), 92-97.]
|
[15] |
唐圣来, 闫正和, 杨鹏, 等. 基于混合模型的井虚拟计量方法与应用[J]. 油气储运, 2023, 42(5): 592-600.
|
|
[TANG S L, YAN Z H, YANG P, et al. Well virtual metering method based on hybrid model and its application[J]. Oil & Gas Storage and Transportation, 2023, 42(5): 592-600.
|
[16] |
HUANG H, GONG B, SUN W Y. A deep-learning-based graph neural network-long-short-term memory model for reservoir simulation and optimization with varying well controls[J]. SPE Journal, 2023, 28(6): 2898-2916.
|
[17] |
NAVRÁTIL J, KING A, RIOS J, et al. Accelerating physics-based simulations using end-to-end neural network proxies: An application in oil reservoir modeling[J]. Frontiers in big Data, 2019, 33(2): 471450.
|
[18] |
ZENG T, ZENG N N, DENG C Z, et al. A data-physical dual-driven surrogate model for reservoir simulation[J]. Physics of Fluids, 2025, 37(2): 026632.
|
[19] |
JEFFERY C, CREEGAN A. Adaptive drilling application uses AI to enhance on-bottom drilling performance[J]. Journal of Petroleum Technology, 2020, 72(8): 45-47.
|
[20] |
陈溯, 安鹏, 吴刚, 等. 海上智能油田建设研究[J]. 石油科技论坛, 2020, 39(5): 16-23.
|
|
[CHEN S, AN P, WU G, et al. Research on offshore intelligent oilfield construction[J]. Petroleum Science and Technology Forum, 2020, 39(5): 16-23.]
|
[21] |
贾静, 粟鹏, 魏可萌, 等. 气田开发生产数字化管理转型探索与实践[J]. 石油科技论坛, 2020, 39(5): 24-33.
|
|
[JIA J, SU P, WEI K M, et al. Research and practice of how to transform digital management of gas field development and production[J]. Petroleum Science and Technology, 2020, 39(5): 24-33.]
|
[22] |
FEDER J. Will this be the decade of full digital twins for well construction?[J]. Journal of Petroleum Technology, 2021, 73(3): 34-37.
|
[23] |
OKHUIJSEN B, WADE K. Real-time production optimization-applying a digital twin model to optimize the entire upstream value chain[C]. Abu Dhabi International Petroleum Exhibition and Conference. SPE, 2019.
|
[24] |
WHALEY J. A bridge between two worlds[J]. Journal of Petroleum Technology, 2020.
|
[25] |
SINGH M, SRIVASTAVA R, FUENMAYOR E, et al. Applications of digital twin across industries: A review[J]. Applied Sciences, 2022, 12(11): 5727.
|
[26] |
ZHU H, LIN B. Digital twin-driven energy consumption management of integrated heat pipe cooling system for a data center[J]. Applied Energy, 2024, 373: 123840.
|
[27] |
陶飞, 程颖, 程江峰, 等. 数字孪生车间信息物理融合理论与技术[J]. 计算机集成制造系统, 2017, 23(8): 1603-1611.
|
|
[TAO F, CHENG Y, CHENG J F, et al. Theories and technologies for cyber-physical fusion in digital twin shop-floor[J]. Computer Integrated Manufacturing Systems, 2017, 23(8): 1603-1611.]
|
[28] |
陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24 (1): 1-18.
|
|
[TAO F, LIU W R, LIU J H, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24 (1): 1-18.]
|
[29] |
陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18.
|
|
[TAO F, LIU W R, ZHANG M, et al. Five dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18.]
|
[30] |
YANG C, CAI B, ZHANG R, et al. Cross-validation enhanced digital twin driven fault diagnosis methodology for minor faults of subsea production control system[J]. Mechanical Systems and Signal Processing, 2023, 204: 110813.
|
[31] |
Kongsberg Corp. LedaFlow Tutorial, Version 2.11[EB/OL]. [2025-09-27]. http://ledaflow.com/products-applications.
URL
|
[32] |
Kongsberg Corp. K-Spice Tutorial, Version 4.8[EB/OL]. [2025-09-27]. http://www.kongsbergdigital.com/industrial-work-surface/kognitwin-k-spice.
URL
|